
 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 1
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Application Note

BRT_AN_033

BT81X Series Programming Guide

Version 2.4

Issue Date: 17-11-2023

This application note describes the process and practice required to program BT81X Series,
(BT815/6 and BT817/8 chips).

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 2
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Table of Contents

1 Introduction .. 11

1.1 Scope .. 11

1.2 Intended Audience .. 11

1.3 Conventions .. 11

1.4 API Reference Definitions ... 11

1.5 What’s new in BT81X Series? .. 12

1.6 What is new in BT817/8? ... 13

2 Programming Model .. 14

2.1 Address Space .. 14

2.2 Data Flow Diagram ... 15

2.3 Read Chip Identification Code (ID) 16

2.4 Initialization Sequence during Boot Up 16

2.5 PWM Control ... 17

2.6 RGB Color Signal ... 17

2.7 Touch Screen .. 18

2.8 Flash Interface ... 19

2.9 Audio Routines ... 19

2.9.1 Sound Effect .. 19

2.9.2 Audio Playback ... 20

2.10 Graphics Routines ... 21

2.10.1 Getting Started ... 21

2.10.2 Coordinate Range and Pixel Precision .. 22

2.10.3 Screen Rotation .. 22

2.10.4 Drawing Pattern .. 24

2.10.5 Bitmap Transformation Matrix .. 26

2.10.6 Color and Transparency ... 26

2.10.7 Performance ... 27

3 Register Description .. 28

3.1 Graphics Engine Registers .. 28

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 3
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.2 Audio Engine Registers ... 32

3.3 Flash Registers ... 34

3.4 Touch Screen Engine Registers 35

3.4.1 Overview ... 35

3.4.2 Common Registers .. 35

3.4.3 Resistive Touch Engine .. 37

3.4.4 Capacitive Touch Engine .. 40

3.4.5 Calibration ... 45

3.5 Coprocessor Engine Registers ... 45

3.6 Miscellaneous Registers .. 46

3.7 Special Registers .. 51

4 Display List Commands .. 54

4.1 Graphics State .. 54

4.2 Command Encoding .. 54

4.3 Command Groups ... 55

4.3.1 Setting Graphics State ... 55

4.3.2 Drawing Actions .. 55

4.3.3 Execution Control.. 55

4.4 ALPHA_FUNC .. 56

4.5 BEGIN ... 56

4.6 BITMAP_EXT_FORMAT .. 57

4.7 BITMAP_HANDLE .. 59

4.8 BITMAP_LAYOUT .. 59

4.9 BITMAP_LAYOUT_H .. 63

4.10 BITMAP_SIZE ... 63

4.11 BITMAP_SIZE_H ... 64

4.12 BITMAP_SOURCE .. 65

4.13 BITMAP_SWIZZLE ... 66

4.14 BITMAP_TRANSFORM_A ... 68

4.15 BITMAP_TRANSFORM_B ... 69

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 4
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.16 BITMAP_TRANSFORM_C ... 69

4.17 BITMAP_TRANSFORM_D ... 70

4.18 BITMAP_TRANSFORM_E ... 70

4.19 BITMAP_TRANSFORM_F ... 71

4.20 BLEND_FUNC .. 72

4.21 CALL ... 73

4.22 CELL .. 74

4.23 CLEAR ... 74

4.24 CLEAR_COLOR_A .. 75

4.25 CLEAR_COLOR_RGB .. 76

4.26 CLEAR_STENCIL .. 77

4.27 CLEAR_TAG ... 77

4.28 COLOR_A .. 78

4.29 COLOR_MASK .. 78

4.30 COLOR_RGB .. 79

4.31 DISPLAY ... 80

4.32 END ... 80

4.33 JUMP ... 81

4.34 LINE_WIDTH .. 81

4.35 MACRO .. 82

4.36 NOP .. 82

4.37 PALETTE_SOURCE ... 83

4.38 POINT_SIZE .. 83

4.39 RESTORE_CONTEXT .. 84

4.40 RETURN .. 85

4.41 SAVE_CONTEXT .. 85

4.42 SCISSOR_SIZE .. 86

4.43 SCISSOR_XY ... 87

4.44 STENCIL_FUNC ... 88

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 5
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.45 STENCIL_MASK ... 88

4.46 STENCIL_OP ... 89

4.47 TAG ... 90

4.48 TAG_MASK .. 90

4.49 VERTEX2F ... 91

4.50 VERTEX2II .. 92

4.51 VERTEX_FORMAT .. 92

4.52 VERTEX_TRANSLATE_X ... 93

4.53 VERTEX_TRANSLATE_Y ... 94

5 Coprocessor Engine ... 95

5.1 Command FIFO ... 95

5.2 Widgets .. 96

5.2.1 Common Physical Dimensions .. 96

5.2.2 Color Settings... 97

5.2.3 Caveat... 97

5.3 Interaction with RAM_DL .. 97

5.3.1 Synchronization between MCU & Coprocessor Engine 98

5.4 ROM and RAM Fonts .. 98

5.4.1 Legacy Font Metrics Block .. 98

5.4.2 Example to find the width of character... 99

5.4.3 Extended Font Metrics Block ... 99

5.4.4 ROM Fonts (Built-in Fonts) ... 101

5.4.5 Using Custom Font .. 102

5.5 Animation support .. 103

5.6 String Formatting ... 104

5.6.1 The Flag Characters .. 105

5.6.2 The Field Width... 105

5.6.3 The Precision .. 105

5.6.4 The Conversion Specifier ... 105

5.7 Coprocessor Faults ... 106

5.8 Coprocessor Graphics State .. 107

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 6
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.9 Parameter OPTION ... 108

5.10 Resources Utilization .. 109

5.11 Command list .. 109

5.12 Command Groups ... 110

5.13 CMD_APILEVEL ... 111

5.14 CMD_DLSTART .. 112

5.15 CMD_INTERRUPT .. 112

5.16 CMD_COLDSTART .. 113

5.17 CMD_SWAP ... 113

5.18 CMD_APPEND ... 114

5.19 CMD_REGREAD ... 114

5.20 CMD_MEMWRITE .. 115

5.21 CMD_INFLATE ... 115

5.22 CMD_INFLATE2 ... 116

5.23 CMD_LOADIMAGE ... 117

5.24 CMD_MEDIAFIFO .. 118

5.25 CMD_PLAYVIDEO .. 119

5.26 CMD_VIDEOSTART .. 120

5.27 CMD_VIDEOFRAME ... 121

5.28 CMD_MEMCRC ... 121

5.29 CMD_MEMZERO ... 122

5.30 CMD_MEMSET ... 122

5.31 CMD_MEMCPY ... 123

5.32 CMD_BUTTON ... 123

5.33 CMD_CLOCK .. 125

5.34 CMD_FGCOLOR ... 128

5.35 CMD_BGCOLOR ... 128

5.36 CMD_GRADCOLOR ... 129

5.37 CMD_GAUGE ... 130

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 7
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.38 CMD_GRADIENT .. 133

5.39 CMD_GRADIENTA ... 135

5.40 CMD_KEYS .. 136

5.41 CMD_PROGRESS ... 139

5.42 CMD_SCROLLBAR .. 140

5.43 CMD_SLIDER ... 142

5.44 CMD_DIAL .. 143

5.45 CMD_TOGGLE .. 145

5.46 CMD_FILLWIDTH .. 146

5.47 CMD_TEXT .. 147

5.48 CMD_SETBASE .. 149

5.49 CMD_NUMBER ... 150

5.50 CMD_NOP ... 151

5.51 CMD_LOADIDENTITY .. 151

5.52 CMD_SETMATRIX .. 152

5.53 CMD_GETMATRIX .. 152

5.54 CMD_GETPTR .. 153

5.55 CMD_GETPROPS .. 153

5.56 CMD_SCALE .. 154

5.57 CMD_ROTATE .. 155

5.58 CMD_ROTATEAROUND .. 156

5.59 CMD_TRANSLATE .. 157

5.60 CMD_CALIBRATE... 158

5.61 CMD_CALIBRATESUB .. 159

5.62 CMD_SETROTATE .. 159

5.63 CMD_SPINNER .. 160

5.64 CMD_SCREENSAVER .. 162

5.65 CMD_SKETCH .. 162

5.66 CMD_STOP .. 163

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 8
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.67 CMD_SETFONT .. 164

5.68 CMD_SETFONT2 .. 165

5.69 CMD_SETSCRATCH .. 165

5.70 CMD_ROMFONT ... 166

5.71 CMD_RESETFONTS .. 167

5.72 CMD_TRACK .. 167

5.73 CMD_SNAPSHOT ... 169

5.74 CMD_SNAPSHOT2 ... 170

5.75 CMD_SETBITMAP .. 171

5.76 CMD_LOGO ... 173

5.77 CMD_FLASHERASE .. 173

5.78 CMD_FLASHWRITE .. 174

5.79 CMD_FLASHPROGRAM .. 174

5.80 CMD_FLASHREAD .. 175

5.81 CMD_APPENDF .. 175

5.82 CMD_FLASHUPDATE .. 176

5.83 CMD_FLASHDETACH .. 176

5.84 CMD_FLASHATTACH .. 177

5.85 CMD_FLASHFAST .. 177

5.86 CMD_FLASHSPIDESEL ... 178

5.87 CMD_FLASHSPITX ... 178

5.88 CMD_FLASHSPIRX .. 178

5.89 CMD_CLEARCACHE .. 179

5.90 CMD_FLASHSOURCE ... 179

5.91 CMD_VIDEOSTARTF .. 180

5.92 CMD_ANIMSTART ... 180

5.93 CMD_ANIMSTARTRAM .. 181

5.94 CMD_RUNANIM ... 181

5.95 CMD_ANIMSTOP ... 183

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 9
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.96 CMD_ANIMXY ... 184

5.97 CMD_ANIMDRAW .. 184

5.98 CMD_ANIMFRAME ... 184

5.99 CMD_ANIMFRAMERAM .. 185

5.100 CMD_SYNC .. 186

5.101 CMD_BITMAP_TRANSFORM .. 186

5.102 CMD_TESTCARD .. 188

5.103 CMD_WAIT ... 189

5.104 CMD_NEWLIST .. 189

5.105 CMD_ENDLIST .. 190

5.106 CMD_CALLLIST ... 190

5.107 CMD_RETURN ... 191

5.108 CMD_FONTCACHE ... 192

5.109 CMD_FONTCACHEQUERY ... 193

5.110 CMD_GETIMAGE .. 193

5.111 CMD_HSF .. 194

5.112 CMD_PCLKFREQ .. 195

6 ASTC .. 197

6.1 ASTC RAM Layout .. 197

6.2 ASTC Flash Layout .. 198

7 Contact Information .. 199

Appendix A – References ... 200

Document References ... 200

Acronyms and Abbreviations ... 200

Appendix B – List of Tables/ Figures/ Registers/ Code

Snippets ... 201

List of Tables ... 201

List of Figures ... 201

List of Registers .. 202

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 10
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

List of Code Snippets .. 204

Appendix C – Revision History 206

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 11
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

1 Introduction

This document captures the programming details for the BT81X Series chips (BT815/6, BT817/8)
including graphics commands, widget commands and configurations to control BT81X Series chips
for smooth and vibrant screen effects.

The BT81X Series chips are graphics controllers with add-on features such as audio playback and

touch capabilities. They consist of a rich set of graphics objects that can be used for displaying
various menus and screen shots for a range of products including home appliances, toys, industrial
machinery, home automation, elevators, and many more.

1.1 Scope

This document will be useful to understand the command set and demonstrate the ease of usage in

the examples given for each specific instruction. In addition, it also covers various power modes,
audio, and touch features as well as their usage.

The descriptions in this document are applicable to both BT815/6 and BT817/8, unless specified
otherwise.

Within this document, the endianness of commands, register values, and data in RAM_G are in
little-endian format.

Information on pin settings, hardware characteristics and hardware configurations can be found in

the BT815/6 or BT817/8 data sheet.

1.2 Intended Audience

The intended audience of this document are Software Programmers and System Designers who

develop graphical user interface (GUI) applications on any processor with an SPI master interface.

1.3 Conventions

All values are in decimal by default.

The values with 0x are in hexadecimal.

The values with 0b’ are in binary.

Host refers to the MCU/MPU with SPI master interface connecting with EVE.

Host commands refer to the EVE specific commands defined in the Serial Data Protocol section of
the datasheet.

1.4 API Reference Definitions

The following table provides the functionality and nomenclature of the APIs used in this document.

wr8() write 8 bits to intended address location

wr16() write 16 bits to intended address location

wr32() write 32 bits to intended address location

rd8() read 8 bits from intended address location

rd16() read 16 bits from intended address location

rd32() read 32 bits from intended address location

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 12
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

cmd() write 32 bits data to command FIFO i.e., RAM_CMD

cmd_*() Write 32 bits commands with its necessary parameters to command FIFO
i.e. RAM_CMD.

dl() Write 32 bits display list command to RAM_DL.

host_command() send host command in host command protocol

Table 1 – API Reference Definitions

1.5 What’s new in BT81X Series?

Compared to the previous generation FT81X series, the BT81X Series introduces several enhanced
features:

❖ QSPI NOR flash interface
❖ Adaptive Scalable Texture Compression(ASTC) format bitmap
❖ Unicode text display
❖ Animation support

 The tables below captures the new and updated commands in BT81X for these features:

Coprocessor
Commands

BT81X Remarks

CMD_ANIMDRAW
CMD_ANIMFRAME
CMD_ANIMSTART
CMD_ANIMSTOP
CMD_ANIMXY

New Animation feature related coprocessor commands

CMD_APPENDF New Append flash data to display list

CMD_CLEARCACHE New Clear the flash cache

CMD_FLASHATTACH
CMD_FLASHDETACH
CMD_FLASHERASE
CMD_FLASHFAST
CMD_FLASHREAD

CMD_FLASHSOURCE
CMD_FLASHSPIDESEL
CMD_FLASHSPIRX
CMD_FLASHSPITX
CMD_FLASHUPDATE
CMD_FLASHWRITE

New Flash interface operation related coprocessor commands

CMD_FILLWIDTH New Set the line width for the text of cmd_text and
cmd_button

CMD_GRADIENTA New Draw a smooth color gradient with transparency

CMD_INFLATE2 New Decompress data into memory with more options:
OPT_FLASH, OPT_MEDIAFIFO

CMD_RESETFONTS New Loads a ROM font into a bitmap handle

CMD_ROTATEAROUND New Apply a rotation and scale around (x,y) for bitmap

CMD_VIDEOSTARTF New Initialize video frame decoder for the data in flash
memory

CMD_TEXT

CMD_BUTTON
CMD_TOGGLE

Changed Added option : OPT_FORMAT

CMD_LOADIMAGE
CMD_PLAYVIDEO
CMD_VIDEOSTARTF

Changed Supports data stored in flash

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 13
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Display List BT81X Remarks
BITMAP_SOURCE Changed Expand the address bit field to access ASTC bitmap in

flash

BITMAP_TRANSFORM_A
BITMAP_TRANSFORM_B
BITMAP_TRANSFORM_D
BITMAP_TRANSFORM_E

Changed Added new precision control: signed fixed point 1.15

BITMAP_LAYOUT Changed Added a new valid value for format parameter:
GLFORMAT

BITMAP_EXT_FORMAT New Support more bitmap formats, especially ASTC
compression formats

BITMAP_SWIZZLE New Set the source for the r,g,b,a channels of a bitmap

Table 2 – Updated Commands in BT81X

1.6 What is new in BT817/8?

BT817/8 maintains backward compatibility with the previous BT815/6 ICs. Any application built for
BT815/6 is able to run on the BT817/8 series without any changes. In short, BT817/8 is an improved
version of BT815/6.

Compared to BT815/6, BT817/8 has a 1.5x graphics engine performance improvement. In addition,
it introduces many enhancements including:

❖ Programmable timing to adjust HSYNC and VSYNC timing, enabling interface to numerous
displays

❖ Add Horizontal Scan out Filter to support non-square pixel LCD display
❖ Adaptive Hsync mode to delay the start of scanout line while keeping PCLK running
❖ Supports Animation in RAM_G
❖ Enable constructing command list in RAM_G

❖ New font cache mechanism for custom fonts whose glyph is in flash

To facilitate the features above, there are the new registers and commands introduced for the
BT817/8. They can be found in this document with the note “BT817/8 specific”.

Besides that, two commands in BT815/6 are improved in BT817/8:

• CMD_GETPTR
• CMD_GETPROPS

However, these two commands are kept in same functionality for compatibility unless
CMD_APILEVEL is sent with parameter level 2.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 14
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2 Programming Model

EVE appears to the host MCU as a memory-mapped SPI device. The host MCU sends commands and
data over the serial protocol described in the data sheet.

2.1 Address Space

All memory and registers are memory mapped into 22-bit address space with a 2-bit SPI command
prefix: Prefix 0'b00 for read and 0'b10 for write to the address space, 0'b01is reserved for Host
Commands and 0'b11 undefined. Please refer to the datasheet about the serial data protocol used

to read/write these addresses. The memory space definitions are provided in the following table:

Name

Start

Address

End

Address
Size

(bytes)

Description

RAM_G 0x000000 0x0FFFFF 1024 Ki General purpose graphics RAM, also
called main memory in this document

ROM_FONT 0x1E0000 0x2FFFFB 1152 Ki Font table and bitmap

ROM_FONTROOT 0x2FFFFC 0x2FFFFF 4 Font table pointer address

RAM_DL 0x300000 0x301FFF 8 Ki Display list RAM

RAM_REG 0x302000 0x302FFF 4 Ki Registers

RAM_CMD 0x308000 0x308FFF 4 Ki Command FIFO

RAM_ERR_REPORT 0x309800 0x3098FF 128 Coprocessor fault report area

Flash memory 0x800000 Depending on
attached flash
chip, up to
0x107FFFFF

Up to
256Mi

External NOR flash memory. It can
NOT be addressed by host directly.

The address is used by the following
commands only for rendering ASTC
image only:
CMD_SETBITMAP
BITMAP_SOURCE

Table 3 – Memory Map

Note:

1. The addresses beyond this table are reserved and shall not be read or written unless

otherwise specified.

2. To access the flash memory, host needs leverage the coprocessor commands, such as

o CMD_FLASHREAD
o CMD_FLASHWRITE
o CMD_FLASHUPDATE
o …….

These commands use zero based address to address the blocks of flash. See Flash Interface for
more details.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 15
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2.2 Data Flow Diagram

Figure 1 describes the data flow between 1) external components (MCU and Flash) 2) internal
components of EVE. Please note that the direct write from MCU to RAM_DL requires careful
actions to sync up the read/write pointers in the respective registers of EVE because coprocessor
engine may also write the generated display list commands into RAM_DL.

To save such effort, the better approach is to write the display list command to RAM_CMD and

make coprocessor update the RAM_DL accordingly.

Figure 1 – BT81X data flow

The data here refers to the following items:

• Display list: Instructions for graphics engine to render the screen

• Coprocessor command: Predefined commands by coprocessor engine
• Bitmap data: Pixel representation in EVE defined formats: such as RGB565, ASTC etc.
• JPEG/PNG stream: Image data in PNG/JPEG format conforming to Eve requirement, for

coprocessor engine to decode.
• MJPEG stream: The video data in MJPEG format conforming to Eve requirement for

coprocessor engine to decode.

• Audio stream: uLaw, ADPCM, PCM encoded audio samples, for audio engine to decode
• Flash image: data to be programmed into flash or data read back from flash.

• Register values: read or write the registers.

 RAM_DL

MCU

RAM_CMD

Graphics
Engine

RAM_G

NOR

Flash

Coprocessor
Engine

Audio Engine

RAM_REG
Touch Engine

SPI

SPI

BT81X

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 16
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2.3 Read Chip Identification Code (ID)

After reset or reboot, the chip ID can be read from address 0xC0000 to 0xC0003.

To read the chip identification code, users shall read 4 bytes of data from address 0xC0000 before
the application overwrites this address, since it is located in RAM_G.

The following table describes the data to be read:

0xC0003 0xC0002 0xC0001 0xC0000

0x00 0x01 0x15 for BT815
0x16 for BT816

0x17 for BT817
0x18 for BT818

0x08

Table 4 – Read Chip Identification Code

2.4 Initialization Sequence during Boot Up

During EVE boot up, the following steps are required:

1. Send host command “CLKEXT” if the PLL input is from external crystal oscillator or external

clock.
2. Send host command “CLKSEL” to select system clock frequency if the non-default system

clock is to be used.
By default, the system clock is set to 60MHz. However, 72MHz is recommended for better performance.

3. Send host command "RST_PULSE” to reset the core of EVE.
4. Send host command “ACTIVE”.
5. Read REG_ID until 0x7C is returned.
6. Read REG_CPURESET till EVE goes into the working status, i.e., zero is returned.

7. Configure display control timing registers, except REG_PCLK
8. Write first display list to RAM_DL.

9. Write REG_DLSWAP to start graphics engine rendering process with first display list
10. Enable backlight control for display panel
11. Write REG_PCLK to configure the PCLK frequency of display panel, which leads to the output

of the first display list

host_command(CLKEXT);//send command "CLKEXT" to use the external clock source

host_command(CLKSEL);// Choose the system clock frequency, with an assumed value of 60MHz.
host_command(RST_PULSE);//send host command "RST_PULSE" to reset

host_command(ACTIVE);//send host command "ACTIVE" to wake up

while (0x7C != rd8(REG_ID));

while (0x0 != rd16(REG_CPURESET)); //Check if EVE is in working status.

wr32(REG_FREQUENCY, 0x3938700); //Configure the system clock to 60MHz.

/* Configure display registers - demonstration for WVGA 800x480 resolution */

wr16(REG_HCYCLE, 928);

wr16(REG_HOFFSET, 88);

wr16(REG_HSYNC0, 0);

wr16(REG_HSYNC1, 48);

wr16(REG_VCYCLE, 525);

wr16(REG_VOFFSET, 32);

wr16(REG_VSYNC0, 0);

wr16(REG_VSYNC1, 3);

wr8(REG_SWIZZLE, 0);

wr8(REG_PCLK_POL, 1);

wr8(REG_CSPREAD, 0);

wr16(REG_HSIZE, 800);

wr16(REG_VSIZE, 480);

/* Write first display list to display list memory RAM_DL*/

wr32(RAM_DL+0,CLEAR_COLOR_RGB(0,0,0));

wr32(RAM_DL+4,CLEAR(1,1,1));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 17
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

int offset = 8;

for (int i=0; i < 16; i++)

{

 wr32(RAM_DL+offset,BITMAP_HANDLE(i));

 offset += 4;

 wr32(RAM_DL+offset,BITMAP_LAYOUT_H(0));

 offset += 4;

 wr32(RAM_DL+offset,BITMAP_SIZE_H(0));

 offset += 4;

}

wr32(RAM_DL+offset,DISPLAY());

wr8(REG_DLSWAP, DLSWAP_FRAME);//display list swap

/* Enable backlight of display panel */

#if defined(FT81X_ENABLE)

 wr16(REG_GPIOX_DIR, 0xffff);

 wr16(REG_GPIOX, 0xffff);

#else

 wr8(REG_GPIO_DIR,0xff);

 wr8(REG_GPIO,0xff);

#endif

wr8(REG_PCLK,2); //Configure the PCLK divisor to 2, i.e. PCLK = System CLK/2

Code Snippet 1 – Initialization Sequence

Note:

1. Throughout the initialization phase, it's essential to maintain the SPI clock frequency below
11MHz. However, once the initialization is complete, this frequency can be raised to a

maximum of 30MHz if the EVE operates in single SPI mode. When the EVE is configured in
Quad SPI mode, the highest allowable SPI frequency becomes 25MHz, provided it does not
exceed half of the system clock frequency.

2. Upon bootup, the bitmap handle setup parameters "bitmap_layout_h/bitmap_size_h"
may have a non-zero value, which can result in the corruption of the rendered bitmap,

particularly if the bitmap size is less than 512 pixels. To avoid this issue, it is advisable to
set these parameters to zero for bitmap handle 0 to 15 in the initial display list by sending

display list as above.

2.5 PWM Control

The PWM signal is controlled by two registers: REG_PWM_HZ and REG_PWM_DUTY.

REG_PWM_HZ specifies the PWM output frequency.

REG_PWM_DUTY specifies the PWM output duty cycle.

2.6 RGB Color Signal

The RGB color signal is carried over 24 signals - 8 each for red, green and blue. Several registers

affect the operation of these signals. The order of these operations in the display output system is
as follows:

REG_DITHER enables color dither. To improve the image quality, EVE applies a 2×2 color dither
matrix to output pixels. The dither option improves half-tone appearance on displays, even on 1-bit
displays.

REG_OUTBITS gives the bit width of each color channel. The default is zero, meaning 8 bits each
channel. Lower values mean that fewer bits are output for the color channel. This value also affects
dither computation.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 18
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_SWIZZLE controls the arrangement of the output color pins, to help PCB routing with different
LCD panel arrangements. Bit 0 of the register causes the order of bits in each color channel to be
reversed. Bits 1-3 control the RGB order. Bit 1 set causes R and B channels to be swapped. Bit 3 is
rotate enable. If bit 3 is set, then (R, G, B) is rotated right if bit 2 is one, or left if bit 2 is zero.
Please refer to BT817/8 datasheet for more details.

2.7 Touch Screen

The raw touch screen (x, y) values are available in register REG_TOUCH_RAW_XY. The range of
these values is 0-1023. If the touch screen is not being pressed, both registers read 0xFFFF.

These touch values are transformed into screen coordinates using the matrix in registers
REG_TOUCH_TRANSFORM_A-F. The post-transform coordinates are available in register
REG_TOUCH_SCREEN_XY. If the touch screen is not being pressed, both registers read 0x8000
(-32768). The values for REG_TOUCH_TRANSFORM A-F may be computed using an on-screen

calibration process. If the screen is being touched, the screen coordinates are looked up in the
screen’s tag buffer, delivering a final 8-bit tag value, in REG_TOUCH_TAG. Because the tag lookup
takes a full frame, and touch coordinates change continuously, the original (x, y) used for the tag
lookup is also available in REG_TOUCH_TAG_XY.

Screen touch pressure is available in REG_TOUCH_RZ. This register gives the resistance of the

touch screen press, so lower values indicate more pressure. The register’s range is 0 (maximum
pressure) to 32767 (no touch). Because the values depend on the particular screen, and the
instrument used for pressing (stylus, fingertip, gloved finger, etc.) a calibration or setup step shall
be used to discover the useful range of resistance values.

REG_TOUCH_MODE controls the frequency of touch sampling. TOUCHMODE_CONTINUOUS is
continuous sampling. Writing TOUCHMODE_ONESHOT causes a single sample to occur.

TOUCHMODE_FRAME causes a sample at the start of each frame. TOUCHMODE_OFF stops all
sampling.

REG_TOUCH_ADC_MODE selects single-ended (ADC_SINGLE_ENDED) or differential
(ADC_DIFFERENTIAL) ADC operation. Single-ended consumes less power, differential gives more
accurate positioning. REG_TOUCH_CHARGE specifies how long to drive the touchscreen voltage
before sampling the pen detect input. The default value 3000 gives a delay of 0.3ms which is suitable

for most screens.

REG_TOUCH_RZTHRESH specifies a threshold for touchscreen resistance. If the measured
touchscreen resistance is greater than this threshold, then no touch is reported. The default value
is 65535, so all touches are reported.

REG_TOUCH_SETTLE specifies how long to drive the touchscreen voltage before sampling the
position. For screens with a large capacitance, this value should be increased. For low capacitance
screens this value can be decreased to reduce "on" time and save power.

REG_TOUCH_OVERSAMPLE controls the oversampling factor used by the touchscreen system.
Increase this value to improve noise rejection if necessary. For systems with low noise, this value

can be lowered to reduce "on" time and save power.

Touch screen 32-bit register updates are atomic: all 32 bits are updated in a single cycle. So, when
reading an XY register, for example, both (x, y) values are guaranteed to be from the same sensing
cycle. When the sensing cycle is complete, and the registers have been updated, the
INT_CONV_COMPLETE interrupt is triggered.

As well as the above high-level samples, the direct 10-bit ADC values are available in two registers,

REG_TOUCH_DIRECT_XY and REG_TOUCH_DIRECT_Z1Z2. These registers are laid out as
follows:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 19
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The S field is 0 if a touch is being sensed, in which case all fields hold their sensed values. If S is 1,
then no touch is sensed and all fields should be ignored.

2.8 Flash Interface

To access an attached flash chip, EVE provides the necessary registers to read/write flash with very
high throughput. The graphics engine can fetch these graphics assets directly without going through
the external host MCU, thus significantly off-loading the host MCU from feeding display contents.

The register REG_FLASH_STATUS indicates the state of the flash subsystem. During boot up, the

flash state is FLASH_STATE_INIT. After detection has completed, flash is in the state
FLASH_STATE_DETACHED or FLASH_STATE_BASIC, depending on whether an attached flash
device was detected. If no device is detected, then all the SPI output signals are driven low. When
the host MCU calls CMD_FLASHFAST, the flash system attempts to go to full-speed mode, setting
the state to FLASH_STATE_FULL. At any time, users can call CMD_FLASHDETACH in order to

disable the flash communications. This tri-states all flash signals, allowing a suitably connected MCU
to drive the flash directly. Alternatively, in the detached state, commands CMD_FLASHSPIDESEL,
CMD_FLASHSPITX and CMD_FLASHSPIRX can be used to control the SPI bus. If detached, the
host MCU can call CMD_FLASHATTACH to re-establish communication with the flash device. Direct
rendering of ASTC based bitmaps from flash is only possible in FLASH_STATE_FULL. After
modifying the contents of flash, the MCU should clear the on-chip bitmap cache by calling

CMD_CLEARCACHE.

Command DETACHED BASIC FULL Operation

CMD_FLASHERASE   Erase all of flash

CMD_FLASHWRITE   Write data from RAM_CMD to

blank flash

CMD_FLASHUPDATE   Read the flash and update to
flash if different

CMD_FLASHPROGRAM   Write data from RAM_G to
blank flash

CMD_FLASHREAD   Reads data from flash to main
memory

CMD_FLASHDETACH   Detach from flash

CMD_FLASHATTACH  Attach to flash

CMD_FLASHFAST  Enter full-speed(fast) mode

CMD_FLASHSPIDESEL  SPI bus: deselect device

CMD_FLASHSPITX  SPI bus: write bytes

CMD_FLASHSPIRX  SPI bus: read bytes

Table 5 – Flash Interface states and commands

To support different vendors of SPI NOR flash chips, the first block (4096 bytes) of the flash is

reserved for the flash driver called BLOB file which is provided by Bridgetek. The BLOB file shall
be programmed first so that flash state can enter into full-speed (fast) mode. Please refer to BT81x
datasheet for more details.

2.9 Audio Routines

The audio engine has two functionalities: synthesize built-in sound effects with selected pitches and
play back the audio data in RAM_G.

2.9.1 Sound Effect

The audio engine has various sound data built-in to work as a sound synthesizer. Sample code to
play C8 on the xylophone:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 20
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

wr8(REG_VOL_SOUND,0xFF); //set the volume to maximum

wr16(REG_SOUND, (0x6C<< 8) | 0x41); // C8 MIDI note on xylophone

wr8(REG_PLAY, 1); // play the sound

Code Snippet 2 – Play C8 on the Xylophone
Sample code to stop sound play:

wr16(REG_SOUND,0x0);//configure “silence” sound to be played

wr8(REG_PLAY,1);//play sound

Sound_status = rd8(REG_PLAY);//1-play is going on, 0-play has finished

Code snippet 3 – Stop Playing Sound

To avoid a pop sound on reset or power state change, trigger a "mute" sound, and wait for it to
complete (i.e., REG_PLAY contains the value of 0). This sets the audio output pin to 0 levels. On

reboot, the audio engine plays back the "unmute" sound.

wr16(REG_SOUND,0x60);//configure “mute” sound to be played

wr8(REG_PLAY,1);//play sound

Sound_status = rd8(REG_PLAY);//1-play is going on, 0-play has finished

Code snippet 4 – Avoid Pop Sound

Note: Refer to BT817/8 datasheet for more information on the sound synthesizer and audio
playback.

2.9.2 Audio Playback

The audio engine supports an audio playback feature. For the audio data in the RAM_G to play back,
it requires the start address in REG_PLAYBACK_START to be 8 bytes aligned. In addition, the
length of audio data specified by REG_PLAYBACK_LENGTH is required to be 8 Bytes aligned.

Three types of audio formats are supported: 4 Bit IMA ADPCM, 8 Bit signed PCM, 8 Bit u-Law. For
IMA ADPCM format, please note the byte order: within one byte, the first sample (4 bits) shall be
located from bit 0 to bit 3, while the second sample (4 bits) shall be located from bit 4 to bit 7.

To learn how to play back the audio data, please check the sample code below:

wr8(REG_VOL_PB,0xFF);//configure audio playback volume

wr32(REG_PLAYBACK_START,0);//configure audio buffer starting address

wr32(REG_PLAYBACK_LENGTH,100*1024);//configure audio buffer length

wr16(REG_PLAYBACK_FREQ,44100);//configure audio sampling frequency

wr8(REG_PLAYBACK_FORMAT,ULAW_SAMPLES);//configure audio format

wr8(REG_PLAYBACK_LOOP,0);//configure once or continuous playback

wr8(REG_PLAYBACK_PLAY,1);//start the audio playback

Code Snippet 5 – Audio Playback

AudioPlay_Status = rd8(REG_PLAYBACK_PLAY);//1-audio playback is going on, 0-audio playback

has finished

Code Snippet 6 – Check the status of Audio Playback

wr32(REG_PLAYBACK_LENGTH,0);//configure the playback length to 0

wr8(REG_PLAYBACK_PLAY,1); //start audio playback

Code Snippet 7 – Stop the Audio Playback

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 21
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2.10 Graphics Routines

This section describes graphics features and captures a few examples. Please note that the code in
this section is for the purpose of illustrating the operation of Display Lists. Application will normally
send the commands via command FIFO (RAM_CMD) instead of writing directly to RAM_DL.

2.10.1 Getting Started

The following example creates a screen with the text “TEXT” on it, with a red dot.

Figure 2 – Getting Started Example

The code to draw the screen is:

wr32(RAM_DL + 0, CLEAR(1, 1, 1)); // clear screen

wr32(RAM_DL + 4, BEGIN(BITMAPS)); // start drawing bitmaps

wr32(RAM_DL + 8, VERTEX2II(220, 110, 31, ‘T’)); // ASCII T in font 31

wr32(RAM_DL + 12,VERTEX2II(244, 110, 31, ‘E’)); // ASCII E in font 31

wr32(RAM_DL + 16, VERTEX2II(270, 110, 31, ‘X’)); // ASCII X in font 31

wr32(RAM_DL + 20, VERTEX2II(299, 110, 31, ‘T’)); // ASCII T in font 31

wr32(RAM_DL + 24, END());

wr32(RAM_DL + 28, COLOR_RGB(160, 22, 22)); // change colour to red

wr32(RAM_DL + 32, POINT_SIZE(320)); // set point size to 20 pixels in radius

wr32(RAM_DL + 36, BEGIN(POINTS)); // start drawing points

wr32(RAM_DL + 40, VERTEX2II(192, 133, 0, 0)); // red point

wr32(RAM_DL + 44, END());

wr32(RAM_DL + 48, DISPLAY()); // display the image

Code Snippet 8 – Getting Started

Upon loading the above drawing commands into RAM_DL, register REG_DLSWAP is required to
be set to 0x02 in order to make the new display list active on the next frame refresh.

Note:

• The display list always starts at address RAM_DL
• The address always increments by 4 bytes as each command is 32 bits wide.
• Command CLEAR is recommended to be used before any other drawing operation, in order

to put the graphics engine in a known state. The end of the display list is always flagged
with the command DISPLAY

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 22
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2.10.2 Coordinate Range and Pixel Precision

Apart from the single pixel precision, EVE support a series of fractional pixel precision, which result

in a different coordinate range. Users may trade the coordinate range against pixel precision. See
VERTEX_FORMAT for more details.

Please note that the maximum screen resolution which EVE can render is up to 2048 by 2048 in
pixels only, regardless of which pixel precision is specified.

VERTEX2F and VERTEX_FORMAT are the commands that enable the drawing operation to reach

the full coordinate plane. The VERTEX2II command only allows positive screen coordinates. The
VERTEX2F command allows negative coordinates. If the bitmap is partially off-screen, for example
during a screen scroll, then it is necessary to specify negative screen coordinates.

2.10.3 Screen Rotation

REG_ROTATE controls the screen orientation. Changing the register value immediately causes the
orientation of the screen to change. In addition, the coordinate system is also changed accordingly,
so that all the display commands and coprocessor commands work in the rotated coordinate system.

Note: The touch transformation matrix is not affected by setting REG_ROTATE.

To adjust the touch screen accordingly, users are recommended to use CMD_SETROTATE as
opposed to setting REG_ROTATE.

REG_ROTATE = 0 is the default landscape orientation:

REG_ROTATE = 1 is inverted landscape:

REG_ROTATE = 2 is portrait:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 23
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_ROTATE = 3 is inverted portrait:

REG_ROTATE = 4 is mirrored landscape:

REG_ROTATE = 5 is mirrored inverted landscape:

REG_ROTATE = 6 is mirrored portrait:

REG_ROTATE = 7 is mirrored inverted portrait:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 24
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2.10.4 Drawing Pattern

The general pattern for drawing is driven by display list commands:

• BEGIN with one of the primitive types
• Input one or more vertices using “VERTEX2II” or “VERTEX2F”, which specify the

placement of the primitive on the screen
• END to mark the end of the primitive.

Examples

Draw points with varying radius from 5 pixels to 13 pixels with different colors:

Draw lines with varying sizes from 2 pixels to 6 pixels with different colors (line width size is from
the center of the line to the boundary):

//The VERTEX2F commands are in pairs to define the start and

finish point of the line.

dl(COLOR_RGB(128, 0, 0));

dl(LINE_WIDTH(2 * 16));

dl(BEGIN(LINES));

dl(VERTEX2F(30 * 16,38 * 16));

dl(VERTEX2F(30 * 16,63 * 16));

dl(COLOR_RGB(0, 128, 0));

dl(LINE_WIDTH(4 * 16));

dl(VERTEX2F(60 * 16,25 * 16));

dl(VERTEX2F(60 * 16,63 * 16));

dl(COLOR_RGB(128, 128, 0));

dl(LINE_WIDTH(6 * 16));

dl(VERTEX2F(90 * 16, 13 * 16));

dl(VERTEX2F(90 * 16, 63 * 16));

//The VERTEX2F command gives the location of the circle

center

dl(COLOR_RGB(128, 0, 0));

dl(POINT_SIZE(5 * 16));

dl(BEGIN(POINTS));

dl(VERTEX2F(30 * 16,17 * 16));

dl(COLOR_RGB(0, 128, 0));

dl(POINT_SIZE(8 * 16));

dl(VERTEX2F(90 * 16, 17 * 16));

dl(COLOR_RGB(0, 0, 128));

dl(POINT_SIZE(10 * 16));

dl(VERTEX2F(30 * 16, 51 * 16));

dl(COLOR_RGB(128, 128, 0));

dl(POINT_SIZE(13 * 16));

dl(VERTEX2F(90 * 16, 51 * 16));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 25
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Draw rectangles with sizes of 5x25, 10x38 and 15x50 dimensions:

(Line width size is used for corner curvature, LINE_WIDTH pixels are added in both directions in
addition to the rectangle dimension):

Draw line strips for sets of coordinates:

Draw Edge strips for above:

Draw Edge strips for below:

//The VERTEX2F commands are in pairs to define the top

left and bottom right corners of the rectangle.

dl(COLOR_RGB(128, 0, 0));

dl(LINE_WIDTH(1 * 16));

dl(BEGIN(RECTS));

dl(VERTEX2F(28 * 16,38 * 16));

dl(VERTEX2F(33 * 16,63 * 16));

dl(COLOR_RGB(0, 128, 0));

dl(LINE_WIDTH(5 * 16));

dl(VERTEX2F(50 * 16,25 * 16));

dl(VERTEX2F(60 * 16,63 * 16));

dl(COLOR_RGB(128, 128, 0));

dl(LINE_WIDTH(10 * 16));

dl(VERTEX2F(83 * 16, 13 * 16));

dl(VERTEX2F(98 * 16, 63 * 16));

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(EDGE_STRIP_B));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(LINE_STRIP));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(EDGE_STRIP_A));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 26
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Draw Edge strips for right:

Draw Edge strips for left:

2.10.5 Bitmap Transformation Matrix

To achieve the bitmap transformation, the bitmap transform matrix below is specified and denoted
as m:

m = [
𝐵𝐼𝑇𝑀𝐴𝑃_𝑇𝑅𝐴𝑁𝑆𝐹𝑂𝑅𝑀_𝐴 𝐵𝐼𝑇𝑀𝐴𝑃_𝑇𝑅𝐴𝑁𝑆𝐹𝑂𝑅𝑀_𝐵 𝐵𝐼𝑇𝑀𝐴𝑃_𝑇𝑅𝐴𝑁𝑆𝐹𝑂𝑅𝑀_𝐶
𝐵𝐼𝑇𝑀𝐴𝑃_𝑇𝑅𝐴𝑁𝑆𝐹𝑂𝑅𝑀_𝐷 𝐵𝐼𝑇𝑀𝐴𝑃_𝑇𝑅𝐴𝑁𝑆𝐹𝑂𝑅𝑀_𝐸 𝐵𝐼𝑇𝑀𝐴𝑃_𝑇𝑅𝐴𝑁𝑆𝐹𝑂𝑅𝑀_𝐹

]

by default m = [
1.0 0.0 0.0
0.0 1.0 0.0

], which is named as the identity matrix.

The coordinates 𝑥′ 𝑦′ after transforming are calculated in the following equation:

[
𝑥′

𝑦′

1

] = m × [
𝑥
𝑦
1

]

i.e.:

𝑥′ = 𝑥 ∗ 𝐴 + 𝑦 ∗ 𝐵 + 𝐶

𝑦′ = 𝑥 ∗ 𝐷 + 𝑦 ∗ 𝐸 + 𝐹

Where A,B,C,D,E,F stands for the values assigned by commands BITMAP_TRANSFORM_A-F.

2.10.6 Color and Transparency

The same bitmap can be drawn in more places on the screen, in different colors and transparency:

dl(COLOR_RGB(255, 64, 64)); // red at (200, 120)

dl(VERTEX2II(200, 120, 0, 0));

dl(COLOR_RGB(64, 180, 64)); // green at (216, 136)

dl(VERTEX2II(216, 136, 0, 0));

dl(COLOR_RGB(255, 255, 64)); // transparent yellow at (232, 152)

dl(COLOR_A(150));

dl(VERTEX2II(232, 152, 0, 0));

Code Snippet 9 – Color and Transparency

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(EDGE_STRIP_R));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(EDGE_STRIP_L));

dl(VERTEX2F(5 * 16,5 * 16));

dl(VERTEX2F(50 * 16,30 * 16));

dl(VERTEX2F(63 * 16,50 * 16));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 27
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The COLOR_RGB command changes the current drawing color, which colors the bitmap. If it is
omitted, the default color RGB (255,255,255) will be used to render the bitmap in its original colors.
The COLOR_A command changes the current drawing alpha, changing the transparency of the
drawing: an alpha of 0 means fully transparent and an alpha of 255 is fully opaque. Here a value of
150 gives a partially transparent effect.

2.10.7 Performance

The graphics engine has no frame buffer: it uses a dynamic compositing method to build up each
display line during scan out. Because of this, there is a finite amount of time available to draw each
line. This time depends on the scan out parameters (decided by REG_PCLK and REG_HCYCLE) but
is never less than 2048 internal clock cycles.

Some performance limits:

• The display list length must be less than 2048 instructions, because the graphics engine
fetches display list commands at a rate of one per clock.

• The usual performance of rending pixels is 16 pixels per clock when the filter mode is
in NEAREST mode, except for the following formats:

▪ TEXT8X8,
▪ TEXTVGA
▪ PALETTED4444/565

which renders 8 pixels per clock.

• For BILINEAR filtered pixels, the drawing rate will be reduced to ¼.

To summarize:

Filter Modes Bitmap Formats Drawing Rate

NEAREST TEXT8X8,
TEXTVGA,
PALETTED4444/565

8 pixel per clock

NEAREST The remaining formats not listed in the
row above

16 pixel per clock

BILINEAR TEXT8X8,
TEXTVGA,
PALETTED4444/565

2 pixel per clock

BILINEAR The remaining formats not listed in the
row above

4 pixel per clock

Table 6 – Bitmap Rendering Performance

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 28
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3 Register Description

The registers are classified into the following groups according to their functionality:

• Graphics Engine Registers,
• Audio Engine Registers,
• Touch Engine Registers,

• Coprocessor Engine Registers,
• Special Registers,
• Miscellaneous Registers.

The detailed definition for each register is listed here. Most of registers are 32 bit wide and the
special cases are marked separately. Reading from or writing to the reserved bits shall be always
zero.

The bit fields marked r/o are read-only.
The bit fields marked w/o are write only.
The bit fields marked r/w are read-write.

The offset of registers is based on the address RAM_REG.

3.1 Graphics Engine Registers

REG_TAG Definition

31 8 7 0

Reserved r/o

Offset: 0x7C Reset Value: 0x0

Bit 31 – 8: Reserved bits

Bit 7 – 0: These bits are updated with the tag value. The tag value here is corresponding to the
touching point coordinator given in REG_TAG_X and REG_TAG_Y.

Note: Please note the difference between REG_TAG and REG_TOUCH_TAG.
 REG_TAG is updated based on the X, Y given by REG_TAG_X and REG_TAG_Y.
 REG_TOUCH_TAG is updated based on the current touching point captured from touch screen.

Register Definition 1 – REG_TAG Definition

REG_TAG_Y Definition

31 11 10 0

Reserved r/w

Offset: 0x78 Reset Value: 0x0

Bit 31 – 11: Reserved Bits

Bit 10 – 0: These bits are set by the host as the Y coordinate of the touching point, which will enable

the host to query the tag value. This register shall be used together with REG_TAG_X and REG_TAG.
Normally, in the case where the host has already captured the touching point’s coordinate; this register
can be updated to query the tag value of respective touching point.

Register Definition 2 – REG_TAG_Y Definition

REG_TAG_X Definition

31 11 10 0

Reserved r/w

Offset: 0x74 Reset Value: 0x0

Bit 31 – 11: Reserved Bits

Bit 10 – 0: These bits are set by the host as the X coordinate of the touching point, which will enable
the host to query the tag value. This register shall be used together with REG_TAG_Y and REG_TAG.
Normally, in the case where the host has already captured the touching point’s coordinate; this

register can be updated to query the tag value of the respective touching point.

Register Definition 3 – REG_TAG_X Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 29
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_PCLK Definition

31 8 7 0

Reserved r/w

Offset: 0x70 Reset Value: 0x0

Bit 31 – 8: Reserved bits

Bit 7 – 0: These bits are set to divide the main clock for PCLK. If the main clock is 60Mhz and the
value of these bits are set to 5, the PCLK will be set to 12 MHz If these bits are set to zero, it means
there is no PCLK output.

Register Definition 4 – REG_PCLK Definition

REG_PCLK_POL Definition

31 1 0

reserved r/w

Offset: 0x6C Reset Value: 0x0

Bit 31 – 1: Reserved bits

Bit 0: This bit controls the polarity of PCLK. If it is set to zero, PCLK polarity is on the rising edge. If
it is set to one, PCLK polarity is on the falling edge

Register Definition 5 – REG_PCLK_POL Definition

REG_CSPREAD Definition

31 1 0

reserved r/w

Offset: 0x68 Reset Value: 0x1

Bit 31 – 1: Reserved bits

Bit 0: This bit controls the transition of RGB signals with PCLK active clock edge, which helps reduce
the system noise. When it is zero, all the color signals are updated at the same time. When it is one,
all the color signal timings are adjusted slightly so that fewer signals change simultaneously.

Register Definition 6 – REG_CSPREAD Definition

REG_SWIZZLE Definition

31 4 3 0

Reserved r/w

Offset: 0x64 Reset Value: 0x0

Bit 31 – 4: Reserved bits

Bit 3 – 0: These bits are set to control the arrangement of output RGB pins, which help support

different LCD panels. Please see the datasheet for the exact definitions.

Register Definition 7 – REG_SWIZZLE Definition

REG_DITHER Definition

31 1 0

reserved r/w

Offset: 0x60 Reset Value: 0x1

Bit 31 – 1: Reserved bits

Bit 0: Set to 1 to enable dithering feature on RGB signals output. Set to 0 to disable dithering
feature. Reading 1 from this bit means dithering feature is enabled. Reading 0 from this bit means
dithering feature is disabled.

Register Definition 8 – REG_DITHER Definition

REG_OUTBITS Definition

31 9 8 0

Reserved r/w

Offset: 0x5C Reset Value: 0x0

Bit 31 – 9: Reserved Bits

Bit 8 – 0: These 9 bits are split into 3 groups for Red, Green and Blue color output signals:
 Bit 8 – 6: Red Color signal lines number. Value zero means 8 output signals.
 Bit 5 – 3: Green Color signal lines number. Value zero means 8 output signals.
 Bit 2 – 0: Blue color signal lines number. Value zero means 8 output signals.
Host can write these bits to control the number of output signals for each color.

Register Definition 9 – REG_OUTBITS Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 30
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_ROTATE Definition

31 3 2 0

Reserved r/w

Offset: 0x58 Reset Value: 0x0

Bit 31 – 3: Reserved bits

Bit 2 – 0: screen rotation control bits.
 0b’000: Default landscape orientation
 0b’001: Inverted landscape orientation
 0b’010: Portrait orientation
 0b’011: Inverted portrait orientation
 0b’100: Mirrored landscape orientation

 0b’101: Mirrored invert landscape orientation
 0b’110: Mirrored portrait orientation
 0b’111: Mirrored inverted portrait orientation

Note: Setting this register will NOT affect touch transform matrix.

Register Definition 10 – REG_ROTATE Definition

REG_DLSWAP Definition

31 2 1 0

Reserved r/w

Offset: 0x54 Reset Value: 0x0

Bit 31 – 2: Reserved bits

Bit 1 – 0: These bits can be set by the host to validate the display list buffer. The graphics engine
will determine when to render the screen, depending on how these bits are set:
 0b’01: Graphics engine will render the screen immediately after current line is scanned out. It
 may cause tearing effect.
 0b’10: Graphics engine will render the screen immediately after current frame is scanned out.
 0b’00: Do not write this value into this register.
 0b’11: Do not write this value into this register.

These bits can be also be read by the host to check the availability of the display list buffer. If the

value is read as zero, the display list buffer is safe and ready to write. Otherwise, the host needs to
wait till it becomes zero.

Register Definition 11 – REG_DLSWAP Definition

REG_VSYNC1 Definition

31 12 11 0

Reserved r/w

Offset: 0x50 Reset Value: 0xA

Bit 31 – 12: Reserved Bits

Bit 11 – 0: These bits specify how many lines of signal VSYNC1 takes at the start of a new frame

Register Definition 12 – REG_VSYNC1 Definition

REG_VSYNC0 Definition

31 12 11 0

Reserved r/w

Offset: 0x4C Reset Value: 0x0

Bit 31 – 12: Reserved Bits

Bit 11 – 0: The value of these bits specifies how many lines of signal VSYNC0 takes at the start of a
new frame

Register Definition 13 – REG_VSYNC0 Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 31
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_VSIZE Definition

31 12 11 0

Reserved r/w

Offset: 0x48 Reset Value: 0x110

Bit 31 – 12: Reserved Bits

Bit 11 – 0: The value of these bits specifies how many lines of pixels in one frame. The valid range is
from 0 to 2047.

Register Definition 14 – REG_VSIZE Definition

REG_VOFFSET Definition

31 12 11 0

Reserved r/w

Offset: 0x44 Reset Value: 0xC

Bit 31 – 12: Reserved Bits

Bit 11 – 0: The value of these bits specifies how many lines taken after the start of a new frame.

Register Definition 15 – REG_VOFFSET Definition

REG_VCYCLE Definition

31 12 11 0

Reserved r/w

Offset: 0x40 Reset Value: 0x124

Bit 31 – 12: Reserved Bits

Bit 11 – 0: The value of these bits specifies how many lines in one frame.

Register Definition 16 – REG_VCYCLE Definition

REG_HSYNC1 Definition

31 12 11 0

Reserved r/w

Offset: 0x3C Reset Value: 0x29

Bit 31 – 12: Reserved Bits

Bit 11 – 0: The value of these bits specifies how many PCLK cycles for HSYNC1 during start of line.

Register Definition 17 – REG_HSYNC1 Definition

REG_HSYNC0 Definition

31 12 11 0

Reserved r/w

Offset: 0x38 Reset Value: 0x0

Bit 31 – 12: Reserved Bits

Bit 11 – 0: The value of these bits specifies how many PCLK cycles for HSYNC0 during start of line.

Register Definition 18 – REG_HSYNC0 Definition

REG_HSIZE Definition

31 12 11 0

Reserved r/w

Offset: 0x34 Reset Value: 0x1E0

Bit 31 – 12: Reserved Bits

Bit 11 – 0: These bits are used to specify the number of PCLK cycles per horizontal line.

Register Definition 19 – REG_HSIZE Definition

REG_HOFFSET Definition

31 12 11 0

Reserved r/w

Offset: 0x30 Reset Value: 0x2B

Bit 31 – 12: Reserved Bits

Bit 11 – 0: These bits are used to specify the number of PCLK cycles before pixels are scanned out.

Register Definition 20 – REG_HOFFSET Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 32
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_HCYCLE Definition

31 12 11 0

Reserved r/w

Offset: 0x2C Reset Value: 0x224

Bit 31 – 12: Reserved Bits

Bit 11 – 0: These bits are the number of total PCLK cycles per horizontal line scan.

Register Definition 21 – REG_HCYCLE Definition

3.2 Audio Engine Registers

REG_PLAY Definition

31 1 0

reserved r/w

Offset: 0x8C Reset Value: 0x0

Bit 31 – 1: Reserved bits

Bit 0: A write to this bit triggers the play of the synthesized sound effect specified in REG_SOUND.
Reading value 1 in this bit means the sound effect is playing. To stop the sound effect, the host
needs to select the silence sound effect by setting up REG_SOUND and set this register to play.

Register Definition 22 – REG_PLAY Definition

REG_SOUND Definition

31 16 15 0

Reserved r/w

Offset: 0x88 Reset Value: 0x0

Bit 31 – 16: Reserved bits

Bit 15 – 0: These bits are used to select the synthesized sound effect. They are split into two

groups: Bit 15 – 8 and Bit 7 – 0.
Bit 15 – 8: The MIDI note for the sound effect defined in Bits 0 – 7.
Bit 7 – 0: These bits define the sound effect. Some of them are pitch adjustable and the pitch is
defined in Bits 8 – 15. Some of them are not pitch adjustable and the Bits 8 – 15 will be ignored.

Note: Please refer to the section “Sound Synthesizer” in BT81X datasheet for details of this register.

Register Definition 23 – REG_SOUND Definition

REG_VOL_SOUND Definition

31 8 7 0

Reserved r/w

Offset: 0x84 Reset Value: 0xFF

Bit 31 – 8: Reserved bits

Bit 7 – 0: These bits control the volume of the synthesizer sound. The default value 0xFF is highest
volume. The value zero means mute.

Register Definition 24 – REG_VOL_SOUND Definition

REG_VOL_PB Definition

31 8 7 0

Reserved r/w

Offset: 0x84 Reset Value: 0xFF

Bit 31 – 8: Reserved bits

Bit 7 – 0: These bits control the volume of the audio file playback. The default value 0xFF is highest
volume. The value zero means mute.

Register Definition 25 – REG_VOL_PB Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 33
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_PLAYBACK_PLAY Definition

31 1 0

Reserved r/w

Offset: 0xCC Reset Value: 0x0

Bit 31 – 1: Reserved bits

Bit 0: A write to this bit triggers the start of audio playback, regardless of writing 0 or 1. It will read
back 1 when playback is on-going, and 0 when playback completes.

Note: Please refer to the section “Audio Playback” in BT81X datasheet for details of this register.

Register Definition 26 – REG_PLAYBACK_PLAY Definition

REG_PLAYBACK_LOOP Definition

31 1 0

Reserved r/w

Offset: 0xC8 Reset Value: 0x0

Bit 31 – 1: Reserved bits

Bit 0: this bit controls the audio engine to play back the audio data in RAM_G from the start address

once it consumes all the data. A value of 1 means LOOP is enabled, a value of 0 means LOOP is
disabled.

Note: Please refer to the section “Audio Playback” in BT81X datasheet for details of this register.

Register Definition 27 – REG_PLAYBACK_LOOP Definition

REG_PLAYBACK_FORMAT Definition

31 2 1 0

Reserved r/w

Offset: 0xC4 Reset Value: 0x0

Bit 31 – 2: Reserved bits

Bit 1 – 0: These bits define the format of the audio data in RAM_G.

 0b’00: Linear Sample format
 0b’01: uLaw Sample format
 0b’10: 4-bit IMA ADPCM Sample format

 0b’11: Undefined.

Note: Please refer to the section “Audio Playback” in BT81X datasheet for details of this register.

Register Definition 28 – REG_PLAYBACK_FORMAT Definition

REG_PLAYBACK_FREQ Definition

31 16 15 0

Reserved r/w

Offset: 0xC0 Reset Value: 0x1F40

Bit 31 – 16: Reserved bits

Bit 15 – 0: These bits specify the sampling frequency of audio playback data. Unit is in Hz.

Note: Please refer to the section “Audio Playback” in BT81X datasheet for details of this register.

Register Definition 29 – REG_PLAYBACK_FREQ Definition

REG_PLAYBACK_READPTR Definition

31 20 19 0

reserved r/w

Offset: 0xBC Reset Value: 0x0

Bit 31 – 20: Reserved bits

Bit 19 – 0: These bits are updated by the audio engine while playing audio data from RAM_G. It is

the current audio data address which is playing back. The host can read this register to check if the
audio engine has consumed all the audio data.

Note: Please refer to the section “Audio Playback” in BT81X datasheet for details of this register.

Register Definition 30 – REG_PLAYBACK_READPTR Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 34
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_PLAYBACK_LENGTH Definition

31 20 19 0

reserved r/w

Offset: 0xB8 Reset Value: 0x0

Bit 31 – 20: Reserved bits

Bit 19 – 0: These bits specify the length of audio data in RAM_G to playback, starting from the
address specified in REG_PLAYBACK_START register.

Note: Please refer to the section “Audio Playback” in BT81X datasheet for details of this register.

Register Definition 31 – REG_PLAYBACK_LENGTH Definition

REG_PLAYBACK_START Definition

31 20 19 0

reserved r/w

Offset: 0xB4 Reset Value: 0x0

Bit 31 – 20: Reserved bits

Bit 19 – 0: These bits specify the start address of audio data in RAM_G to playback.

Note: Please refer to the section “Audio Playback” in BT81X datasheet for details of this register.

Register Definition 32 – REG_PLAYBACK_START Definition

REG_PLAYBACK_PAUSE Definition

7 1 0

reserved r/w

Offset: 0x5EC Reset Value: 0x0

Bit 7 – 1: Reserved bits

Bit 0: Audio playback control bit.
 Writing 1 to pause the playback, writing 0 to start the playback.

Note: Please refer to the section “Audio Playback” in BT81X datasheet for details of this register.

Register Definition 33 – REG_PLAYBACK_PAUSE Definition

3.3 Flash Registers

REG_FLASH_STATUS Definition

7 2 1 0

reserved r/o

Offset: 0x5F0 Reset Value: 0x0

Bit 7 – 2: Reserved bits

Bit 1 – 0: These bits reflect the current status of attached flash.
 0b’00: FLASH_STATUS_INIT
 0b’01: FLASH_STATUS_DETACHED
 0b’10: FLASH_STATUS_BASIC
 0b’11: FLASH_STATUS_FULL

Note: Please refer to the section “SPI NOR Flash Interface” in BT817/8 datasheet for details.

Register Definition 34 – REG_FLASH_STATUS Definition

REG_FLASH_SIZE Definition

31 0

r/o

Offset: 0x7024 Reset Value: 0x0

Bit 31 – 0: The value indicates the capacity of attached flash, in Mbytes.

Note: Please refer to the section “SPI NOR Flash Interface” in BT817/8 datasheet for details

Register Definition 35 – REG_FLASH_SIZE Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 35
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.4 Touch Screen Engine Registers

3.4.1 Overview

EVE supports screen touch functionality by either Resistive Touch Engine (RTE) or Capacitive Touch

Screen Engine (CTSE). BT815/BT817 has CTSE built-in while BT816/BT818 has RTE built-in.

3.4.2 Common Registers

This chapter describes the common registers which are effective to both RTE and CTSE.

Offset Register Name Description

0x150 – 0x164 REG_TOUCH_TRANSFORM_A~F Transform coefficient matrix coefficient

0x168 REG_TOUCH_CONFIG Configuration register

Table 7 – Common Registers Summary

REG_TOUCH_CONFIG Definition

31 16 15 14 13 12 11 10 4 3 2 1 0

reserved r/o r/w rsvd r/w r/w r/w r/w r/w r/w

Offset: 0x168 Reset Value: 0x8381 (BT816/818) or 0x381(BT815/817)

Bit 31 – 16: Reserved bits

Bit 15: Working mode of touch engine.
 0: capacitive 1: resistive

Bit 14: 1: Enable the host mode. 0: Normal mode

Bit 13: Reserved bit

Bit 12: Ignore short-circuit protection. For resistive touch screen only.

Bit 11: Enable low-power mode(for FocalTech only)

Bit 10 – 4: I2C address of capacitive touch screen module:

 0b’0111000 for FocalTech/Hycontek

 0b’1011101 for Goodix

Bit 3: Reserved.

Bit 2: Suppress 300ms startup (for FocalTech only)

Bit 1 – 0: Sampling clocks(for resistive touch screen only)

Register Definition 36 – REG_TOUCH_CONFIG Definition

REG_TOUCH_TRANSFORM_F Definition

31 30 16 15 0

r/w r/w r/w

Offset: 0x164 Reset Value: 0x0

Bit 31 : The sign bit for fixed point number

Bit 30 – 16: The value of these bits represents the integer part of the fixed-point number.

Bit 15 – 0: The value of these bits represents the fractional part of the fixed-point number.

Note: This register represents a fixed-point number and the default value is +0.0 after reset.

Register Definition 37 – REG_TOUCH_TRANSFORM_F Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 36
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_TOUCH_TRANSFORM_E Definition

31 30 16 15 0

r/w r/w r/w

Offset: 0x160 Reset Value: 0x10000

Bit 31 : The sign bit for fixed point number

Bit 30 – 16: The value of these bits represents the integer part of the fixed-point number.

Bit 15 – 0: The value of these bits represents the fractional part of the fixed-point number.

Note: This register represents a fixed-point number and the default value is +1.0 after reset.

Register Definition 38 – REG_TOUCH_TRANSFORM_E Definition

REG_TOUCH_TRANSFORM_D Definition

31 30 16 15 0

r/w r/w r/w

Offset: 0x15C Reset Value: 0x0

Bit 31 : The sign bit for fixed point number

Bit 30 – 16: The value of these bits represents the integer part of the fixed-point number.

Bit 15 – 0 : The value of these bits represents the fractional part of the fixed-point number.

Note: This register represents a fixed-point number and the default value is +0.0 after reset.

Register Definition 39 – REG_TOUCH_TRANSFORM_D Definition

REG_TOUCH_TRANSFORM_C Definition

31 30 16 15 0

r/w r/w r/w

Offset: 0x158 Reset Value: 0x0

Bit 31 : The sign bit for fixed point number

Bit 30 – 16 : The value of these bits represents the integer part of the fixed-point number.

Bit 15 – 0: The value of these bits represents the fractional part of the fixed-point number.

Note: This register represents fixed point number and the default value is +0.0 after reset.

Register Definition 40 – REG_TOUCH_TRANSFORM_C Definition

REG_TOUCH_TRANSFORM_B Definition

31 30 16 15 0

r/w r/w r/w

Offset: 0x154 Reset Value: 0x0

Bit 31: The sign bit for fixed point number

Bit 30 – 16: The value of these bits represents the integer part of the fixed-point number.

Bit 15 – 0: The value of these bits represents the fractional part of the fixed-point number.

Note: This register represents a fixed-point number and the default value is +0.0 after reset.

Register Definition 41 – REG_TOUCH_TRANSFORM_B Definition

REG_TOUCH_TRANSFORM_A Definition

31 30 16 15 0

r/w r/w r/w

Offset: 0x150 Reset Value: 0x10000

Bit 31 : The sign bit for fixed point number

Bit 30 – 16: The value of these bits represents the integer part of the fixed-point number.

Bit 15 – 0: The value of these bits represents the fractional part of the fixed-point number.

Note: This register represents a fixed-point number and the default value is +1.0 after reset.

Register Definition 42 – REG_TOUCH_TRANSFORM_A Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 37
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.4.3 Resistive Touch Engine

All the registers available in RTE are identical to FT810.

Offset Register Name Description

0x104 REG_TOUCH_MODE Touch screen sampling Mode

0x108 REG_TOUCH_ADC_MODE Select ADC working mode

0x10C REG_TOUCH_CHARGE Touch screen charge time, unit of 6 clocks

0x110 REG_TOUCH_SETTLE Touch screen settle time, unit of 6 clocks

0x114 REG_TOUCH_OVERSAMPLE Touch screen oversample factor

0x118 REG_TOUCH_RZTHRESH Touch screen resistance threshold

0x11C REG_TOUCH_RAW_XY Touch screen raw x,y(16,16)

0x120 REG_TOUCH_RZ Touch screen resistance

0x124 REG_TOUCH_SCREEN_XY Touch screen x,y(16,16)

0x128 REG_TOUCH_TAG_XY coordinate used to calculate the tag of touch point

0x12C REG_TOUCH_TAG Touch screen Tag result

Table 8 – RTE Registers Summary

REG_TOUCH_TAG Definition

31 8 7 0

Reserved r/o

Offset: 0x12C Reset Value: 0x0

Bit 31 – 8: Reserved Bits

Bit v7 – 0: These bits are set as the tag value of the specific graphics object on the screen which is
being touched. These bits are updated once when all the lines of the current frame are scanned out
to the screen.

Note: The valid tag value is from 1 to 255 and the default value of this register is zero, meaning
there is no touch by default.

Register Definition 43 – REG_TOUCH_TAG Definition

REG_TOUCH_TAG_XY Definition

31 16 15 0

r/o r/o

Offset: 0x128 Reset Value: 0x0

Bit 31 – 16: The value of these bits are X coordinates of the touch screen to look up the tag result.

Bit 15 – 0: The value of these bits are the Y coordinates of the touch screen to look up the tag
result.

Note: Host can read this register to check the coordinates used by the touch engine to update the
tag register REG_TOUCH_TAG.

Register Definition 44 – REG_TOUCH_TAG_XY Definition

REG_TOUCH_SCREEN _XY Definition

31 16 15 0

r/o r/o

Offset: 0x124 Reset Value: 0x80008000

Bit 31 – 16: The value of these bits is the X coordinates of the touch screen. After doing calibration,
it shall be within the width of the screen size. If the touch screen is not being touched, it shall be
0x8000.

Bit 15 – 0: The value of these bits is the Y coordinates of the touch screen. After doing calibration,
it shall be within the width of the screen size. If the touch screen is not being touched, it shall be
0x8000.

Register Definition 45 – REG_TOUCH_SCREEN_XY Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 38
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_TOUCH_DIRECT_Z1Z2 Definition

31 26 25 16 15 10 9 0

reserved r/o reserved r/o

Offset: 0x190 Reset Value: NA

Bit 31 – 26 : Reserved Bits

Bit 25 – 16 : 10-bit ADC value for touch screen resistance Z1

Bit 15 – 10 : Reserved Bits

Bit 9 – 0 : 10-bit ADC value for touch screen resistance Z2

Note: To know it is touched or not, please check the 31st bit of REG_TOUCH_DIRECT_XY. Touch
engine will do the post-processing for these Z1 and Z2 values and update the result in
REG_TOUCH_RZ.

Register Definition 46 – REG_TOUCH_DIRECT_Z1Z2 Definition

REG_TOUCH_DIRECT_XY Definition

31 30 26 25 16 15 10 9 0

r/o reserved r/o reserved r/o

Offset: 0x18C Reset Value: 0x0

Bit 31: If this bit is zero, it means a touch is being sensed and the two fields above contain the
sensed data. If this bit is one, it means no touch is being sensed and the data in the two fields above
shall be ignored.

Bit 30 – 26 : Reserved Bits

Bit 25 – 16 : 10-bit ADC value for touch screen resistance Z1

Bit 15 – 10 : Reserved Bits

Bit 9 – 0 : 10-bit ADC value for touch screen resistance Z2

Register Definition 47 – REG_TOUCH_DIRECT_XY

REG_TOUCH_RZ Definition

31 16 15 0

Reserved r/o

Offset: 0x120 Reset Value: 0x7FFF

Bit 31 – 16: Reserved Bits

Bit 15 – 0: These bits measure the touching pressure on the touch screen. The valid value is from 0
to 0x7FFF. The highest value(0x7FFF) means no touch and the lowest value (0) means the maximum
touching pressure.

Register Definition 48 – REG_TOUCH_RZ Definition

REG_TOUCH_RAW _XY Definition

31 16 15 0

r/o r/o

Offset: 0x11C Reset Value: 0xFFFFFFFF

Bit 31 – 16: These bits are the raw X coordinates before going through calibration process. The valid
range is from 0 to 1023. If there is no touch on screen, the value shall be 0xFFFF.

Bit 15 – 0: These bits are the raw Y coordinates of the touch screen before going through calibration
process. The valid range is from 0 to 1023. If there is no touch on screen, the value shall be 0xFFFF.

Note: The coordinates in this register have not mapped into the screen coordinates. To get the
screen coordinates, please refer to REG_TOUCH_SCREEN_XY.

Register Definition 49 – REG_TOUCH_RAW_XY Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 39
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_TOUCH_RZTHRESH Definition

31 16 15 0

Reserved r/w

Offset: 0x118 Reset Value: 0xFFFF

Bit 31 – 16: Reserved Bits.

Bit 15 - 0: These bits control the touch screen resistance threshold. The host can adjust the touch
screen touching sensitivity by setting this register. The default value after reset is 0xFFFF and it
means the lightest touch will be accepted by the RTE. The host can set this register by doing
experiments. The typical value is 1200.

Register Definition 50 – REG_TOUCH_RZTHRESH Definition

REG_TOUCH_OVERSAMPLE Definition

31 4 3 0

reserved r/w

Offset: 0x114 Reset Value: 0x7

Bit 31 – 4: Reserved Bits.

Bit 3 – 0: These bits control the touch screen oversample factor. The higher value of this register
causes more accuracy with more power consumption, but may not be necessary. The valid range is
from 1 to 15.

Register Definition 51 – REG_TOUCH_OVERSAMPLE Definition

REG_TOUCH_SETTLE Definition

31 4 3 0

reserved r/w

Offset: 0x110 Reset Value: 0x3

Bit 31 – 4: Reserved Bits.

Bit 3 – 0: These bits control the touch screen settle time, in the unit of 6 clocks. The default value is
3, meaning the settle time is 18 (3*6) system clock cycles.

Register Definition 52 – REG_TOUCH_SETTLE Definition

REG_TOUCH_CHARGE Definition

31 16 15 0

Reserved r/w

Offset: 0x10C Reset Value: 0x1770

Bit 31 – 16: Reserved Bits.

Bit 15 – 0: These bits control the touch screen charge time, in the unit of 6 clocks. The default value
is 6000, meaning the charge time is (6000*6) system clock cycles.

Register Definition 53 – REG_TOUCH_CHARGE Definition

REG_TOUCH_ADC_MODE Definition

31 2 1 0

reserved r/w

Offset: 0x108 Reset Value: 0x1

Bit 31 – 1 : Reserved bits

Bit 0: The host can set this bit to control the ADC sampling mode, as per:
 0: Single Ended mode. It causes lower power consumption but with less accuracy.

 1: Differential Mode. It causes higher power consumption but with more accuracy.

Register Definition 54 – REG_TOUCH_ADC_MODE Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 40
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_TOUCH_MODE Definition

31 2 1 0

reserved r/w

Offset: 0x104 Reset Value: 0x3

Bit 31 – 2: Reserved bits

Bit 1 – 0: The host can set these two bits to control the touch screen sampling mode of touch
engine, as per:
 0b’00: Off mode. No sampling happens. RTE stops working.
 0b’01: Single mode. Cause one single sample to occur.
 0b’10: Frame mode. Cause a sample at the start of each frame.
 0b’11: Continuous mode. Up to 1000 times per seconds. Default mode after reset.

Register Definition 55 – REG_TOUCH_MODE Definition

3.4.4 Capacitive Touch Engine

Capacitive Touch Screen Engine (CTSE) has the following features:

• I2C interface to Capacitive Touch Panel Module (CTPM)
• Detects up to 5 touch points at the same time
• Supports CTPM with FocalTech and Goodix touch controller.
• Supports touch host mode. Please refer to the datasheet for details.
• Compatibility mode for single touching point and extended mode for multi-touching points.

After reset or boot up, CTSE works in compatibility mode and only one touch point is detected. In
extended mode, it can detect up to five touch points simultaneously.

CTSE makes use of the same registers set REG_TOUCH_TRANSFORM_A~F to transform the raw
coordinates to a calibrated screen coordinate, regardless of whether it is in compatibility mode or
extended mode.

Note: The calibration process of the touch screen should only be performed in compatibility mode.

Offset Register Name Description

0x104 REG_CTOUCH_MODE Touch screen sampling Mode

0x108 REG_CTOUCH_EXTENDED Select ADC working mode

0x11C REG_CTOUCH_TOUCH1_XY Coordinate of second touch point

0x120 REG_CTOUCH_TOUCH4_Y Y coordinate of fifth touch point

0x124 REG_CTOUCH_TOUCH_XY Coordinate of first touch point

0x128 REG_CTOUCH_TAG_XY coordinate used to calculate the tag of first
touch point

0x12C REG_CTOUCH_TAG Touch screen Tag result of fist touch point

0x130 REG_CTOUCH_TAG1_XY XY used to tag of second touch point

0x134 REG_CTOUCH_TAG1 Tag result of second touch point

0x138 REG_CTOUCH_TAG2_XY XY used to tag of third touch point

0x13C REG_CTOUCH_TAG2 Tag result of third touch point

0x140 REG_CTOUCH_TAG3_XY XY used to tag of fourth touch point

0x144 REG_CTOUCH_TAG3 Tag result of fourth touch point

0x148 REG_CTOUCH_TAG4_XY XY used to tag of fifth touch point

0x14C REG_CTOUCH_TAG4 Tag result of fifth touch point

0x16C REG_CTOUCH_TOUCH4_X X coordinate of fifth touch point

0x18C REG_CTOUCH_TOUCH2_XY Third touch point coordinate

0x190 REG_CTOUCH_TOUCH3_XY Fourth touch point coordinate

Table 9 – CTSE Registers Summary

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 41
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The following tables define the registers provided by CTSE:

REG_CTOUCH_MODE Definition

31 2 1 0

Reserved r/w

Offset: 0x104 Reset Value: 0x3

Bit 31 – 2 : Reserved bits

Bit 1 – 0: The host can set these two bits to control the touch screen sampling mode of the touch
engine, as per:
 0b’00: Off mode. No sampling happens. CTSE stops working.
 0b’01: Not defined.

 0b’10: Not defined.
 0b’11: On mode.

Register Definition 56 – REG_CTOUCH_MODE Definition

REG_CTOUCH_EXTEND Definition

31 1 0

reserved r/w

Offset: 0x108 Reset Value: 0x1

Bit 31 – 1 : Reserved bits

Bit 0: This bit controls the detection mode of the touch engine, as per:
 0: Extended mode, multi-touch detection mode
 1: Compatibility mode, single touch detection mode

Register Definition 57 – REG_CTOUCH_EXTENDED Definition

REG_CTOUCH_TOUCH_XY Definition

31 16 15 0

r/o r/o

Offset: 0x124 Reset Value: 0x80008000

Bit 31 – 16: The value of these bits is X coordinate of the first touch point

Bit 15 - 0: The value of these bits is Y coordinate of the first touch point.

Note: This register is applicable for extended mode and compatibility mode. For compatibility mode,
it reflects the position of the only touch point

Register Definition 58 – REG_CTOUCH_TOUCH_XY Definition

REG_CTOUCH_TOUCH1_XY Definition

31 16 15 0

r/o r/o

Offset: 0x11C Reset Value: 0x80008000

Bit 31 – 16: The value of these bits is X coordinate of the second touch point

Bit 15 - 0: The value of these bits is Y coordinate of the second touch point.

Note: This register is only applicable in the extended mode

Register Definition 59 – REG_CTOUCH_TOUCH1_XY Definition

REG_CTOUCH_TOUCH2_XY Definition

31 16 15 0

r/o r/o

Offset: 0x18C Reset Value: 0x80008000

Bit 31 – 16: The value of these bits is X coordinates of the third touch point

Bit 15 - 0: The value of these bits is Y coordinates of the third touch point.

Note: This register is only applicable in the extended mode

Register Definition 60 – REG_CTOUCH_TOUCH2_XY Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 42
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_CTOUCH_TOUCH3_XY Definition

31 16 15 0

r/o r/o

Offset: 0x190 Reset Value: 0x80008000

Bit 31 – 16: The value of these bits is X coordinate of the fourth touch point

Bit 15 - 0: The value of these bits is Y coordinate of the fourth touch point.

Note: This register is only applicable in the extended mode

Register Definition 61 – REG_CTOUCH_TOUCH3_XY Definition

REG_CTOUCH_TOUCH4_X Definition

15 0

r/o

Offset: 0x16C Reset Value: 0x8000

Bit 15 – 0: The value of these bits is X coordinate of the fifth touch point.

Note: This register is only applicable in the extended mode. It is a 16-bit register.

Register Definition 62 – REG_CTOUCH_TOUCH4_X Definition

REG_CTOUCH_TOUCH4_Y Definition

15 0

r/o

Offset: 0x120 Reset Value: 0x8000

Bit 15 – 0: The value of these bits is Y coordinate of the fifth touch point.

Note: This register is only applicable in the extended mode. It is a 16-bit register.

Register Definition 63 – REG_CTOUCH_TOUCH4_Y Definition

REG_CTOUCH_RAW_XY Definition

31 16 15 0

r/o r/o

Offset: 0x11C Reset Value: 0xFFFFFFFF

Bit 31 – 16: The value of these bits is the X coordinate of a touch point before going through
calibration process

Bit 15 - 0: The value of these bits is the Y coordinate of a touch point before going through
calibration process

Note: This register is only applicable in the compatibility mode

Register Definition 64 – REG_CTOUCH_RAW_XY Definition

REG_CTOUCH_TAG Definition

31 8 7 0

Reserved r/o

Offset: 0x12C Reset Value: 0x0

Bit 31 – 8: Reserved Bits

Bit 7 – 0: These bits are set as the tag value of the specific graphics object on the screen which is
being touched. These bits are updated once when all the lines of the current frame are scanned out
to the screen. It works in both extended mode and compatibility mode. In extended mode, it is the
tag of the first touch point, i.e., the tag value mapping to the coordinate in

REG_CTOUCH_TAG_XY

Note: The valid tag value range is from 1 to 255, therefore the default value of this register is zero,
meaning there is no touch by default. In extended mode, it refers to the first touch point

Register Definition 65 – REG_CTOUCH_TAG Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 43
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_CTOUCH_TAG1 Definition

31 8 7 0

Reserved r/o

Offset: 0x134 Reset Value: 0x0

Bit 31 – 8: Reserved Bits

Bit 7 - 0: These bits are set as the tag value of the specific graphics object on the screen which is
being touched. It is the second touch point in extended mode. These bits are updated once when
all the lines of the current frame are scanned out to the screen.

Note: The valid tag value range is from 1 to 255, therefore the default value of this register is zero,

meaning there is no touch by default. This register is only applicable in the extended mode.

Register Definition 66 – REG_CTOUCH_TAG1 Definition

REG_CTOUCH_TAG2 Definition

31 8 7 0

Reserved r/o

Offset: 0x13C Reset Value: 0x0

Bit 31 – 8: Reserved Bits

Bit 7 – 0: These bits are set as the tag value of the specific graphics object on the screen which is

being touched. It is the third touch point in extended mode. These bits are updated once when all
the lines of the current frame are scanned out to the screen.

Note: The valid tag value range is from 1 to 255, therefore the default value of this register is zero,
meaning there is no touch by default. This register is only applicable in the extended mode.

Register Definition 67 – REG_CTOUCH_TAG2 Definition

REG_CTOUCH_TAG3 Definition

31 8 7 0

Reserved r/o

Offset: 0x144 Reset Value: 0x0

Bit 31 – 8: Reserved Bits

Bit 7 – 0: These bits are set as the tag value of the specific graphics object on the screen which is

being touched. It is the fourth touch point in extended mode. These bits are updated once when all
the lines of the current frame are scanned out to the screen.

Note: The valid tag value range is from 1 to 255, therefore the default value of this register is zero,
meaning there is no touch by default. This register is only applicable in the extended mode.

Register Definition 68 – REG_CTOUCH_TAG3 Definition

REG_CTOUCH_TAG4 Definition

31 8 7 0

Reserved r/o

Offset: 0x14C Reset Value: 0x0

Bit 31 – 8: Reserved Bits

Bit 7 – 0: These bits are set as the tag value of the specific graphics object on the screen which is
being touched. It is the fifth touch point in extended mode. These bits are updated once when all
the lines of the current frame are scanned out to the screen.

Note: The valid tag value range is from 1 to 255, therefore the default value of this register is zero,

meaning there is no touch by default. This register is only applicable in the extended mode.

Register Definition 69 – REG_CTOUCH_TAG4 Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 44
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 REG_CTOUCH_TAG_XY Definition

31 16 15 0

r/o r/o

Offset: 0x128 Reset Value: 0x0

Bit 31 – 16: The value of these bits is X coordinate of the touch screen, used by the touch engine to
look up the tag result.

Bit 15 - 0: The value of these bits is Y coordinate of the touch screen, used by the touch engine to
look up the tag result.

Note: The Host can read this register to check the coordinates used by the touch engine to update
the tag register REG_CTOUCH_TAG.

Register Definition 70 – REG_CTOUCH_TAG_XY Definition

REG_CTOUCH_TAG1_XY Definition

31 16 15 0

r/o r/o

Offset: 0x130 Reset Value: 0x0

Bit 31 – 16: The value of these bits is X coordinate of the touch screen to look up the tag result.

Bit 15 – 0: The value of these bits is Y coordinate of the touch screen to look up the tag result.

Note: The Host can read this register to check the coordinates used by the touch engine to update
the tag register REG_CTOUCH_TAG1.

Register Definition 71 – REG_CTOUCH_TAG1_XY Definition

REG_CTOUCH_TAG2_XY Definition

31 16 15 0

r/o r/o

Offset: 0x138 Reset Value: 0x0

Bit 31 – 16: The value of these bits is X coordinate of the touch screen to look up the tag result.

Bit 15 - 0: The value of these bits is Y coordinate of the touch screen to look up the tag result.

Note: The Host can read this register to check the coordinates used by the touch engine to update
the tag register REG_CTOUCH_TAG2.

Register Definition 72 – REG_CTOUCH_TAG2_XY Definition

REG_CTOUCH_TAG3_XY Definition

31 16 15 0

r/o r/o

Offset: 0x140 Reset Value: 0x0

Bit 31 – 16: The value of these bits is X coordinate of the touch screen to look up the tag result.

Bit 15 - 0: The value of these bits is Y coordinate of the touch screen to look up the tag result.

Note: The Host can read this register to check the coordinates used by the touch engine to update
the tag register REG_CTOUCH_TAG3.

Register Definition 73 – REG_CTOUCH_TAG3_XY Definition

REG_CTOUCH_TAG4_XY Definition

31 16 15 0

r/o r/o

Offset: 0x148 Reset Value: 0x0

Bit 31 – 16: The value of these bits is X coordinate of the touch screen to look up the tag result.

Bit 15 - 0: The value of these bits is Y coordinate of the touch screen to look up the tag result.

Note: The Host can read this register to check the coordinates used by the touch engine to update
the tag register REG_CTOUCH_TAG4.

Register Definition 74 – REG_CTOUCH_TAG4_XY Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 45
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.4.5 Calibration

The calibration process is initiated by CMD_CALIBRATE and works with both the RTE and CTSE,

but is only available in the compatibility mode of the CTSE. However, the results of the calibration
process are applicable to both compatibility mode and extended mode. As such, users are
recommended to finish the calibration process before entering into extended mode.

After the calibration process is complete, the registers REG_TOUCH_TRANSFORM_A-F will be
updated accordingly.

3.5 Coprocessor Engine Registers

REG_CMD_DL Definition

31 13 12 0

Reserved r/w

Offset: 0x100 Reset Value: 0x0

Bit 31 – 13: Reserved Bits

Bit 12 – 0: These bits indicate the offset from RAM_DL of the display list commands generated by
the coprocessor engine. The coprocessor engine depends on these bits to determine the address in

the display list buffer of generated display list commands. It will update this register as long as the
display list commands are generated into the display list buffer. By setting this register properly, the
host can specify the starting address in the display list buffer for the coprocessor engine to generate
display commands. The valid value range is from 0 to 8191 (sizeof(RAM_DL)-1).

Register Definition 75 – REG_CMD_DL Definition

REG_CMD_WRITE Definition

31 12 11 0

Reserved r/w

Offset: 0xFC Reset Value: 0x0

Bit 31 – 12: Reserved Bits

Bit 11 – 0: These bits are updated by the MCU to inform the coprocessor engine of the ending
address of valid data feeding into its FIFO. Typically, the host will update this register after it has
downloaded the coprocessor commands into its FIFO. The valid range is from 0 to 4095, i.e., within
the size of the FIFO.

Note: The FIFO size of the command buffer is 4096 bytes and each coprocessor instruction is of 4

bytes in size. The value to be written into this register must be 4 bytes aligned.

Register Definition 76 – REG_CMD_WRITE Definition

REG_CMD_READ Definition

31 12 11 0

Reserved r/o

Offset: 0xF8 Reset Value: 0x0

Bit 31 – 12: Reserved Bits

Bit 11 – 0: These bits are updated by the coprocessor engine as long as the coprocessor engine
fetched the command from its FIFO. The host can read this register to determine the FIFO fullness of

the coprocessor engine. The valid value range is from 0 to 4095. In the case of an error, the

coprocessor engine writes 0xFFF to this register.

Note: The host shall not write into this register unless in an error recovery case. The default value is
zero after the coprocessor engine is reset.

Register Definition 77 – REG_CMD_READ Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 46
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_CMDB_SPACE Definition

31 12 11 0

Reserved r/o

Offset: 0x574 Reset Value: 0xFFC

Bit 31 – 12: Reserved Bits

Bit 11 – 0: These bits are updated by the coprocessor engine to indicate the free space in
RAM_CMD. The host can read this register to determine how many bytes are available to be written
into RAM_CMD before writing to RAM_CMD.

Note: The host shall not write into this register unless in an error recovery case. The default value is
zero after the coprocessor engine is reset.

Register Definition 78 – REG_CMDB_SPACE Definition

REG_CMDB_WRITE Definition

31 0

w/o

Offset: 0x578 Reset Value: 0x0

Bit 31 – 0: The data or command to be written into RAM_CMD. The Host can issue one write
transfer with this register address to transfer data less than or equal to the amount of

REG_CMDB_SPACE to make bulky data transfer possible.

Note: This register helps programmers write to the coprocessor FIFO(RAM_CMD). It was
introduced from the FT810 series chip. Always write this register with 4 bytes aligned data.

Register Definition 79 – REG_CMDB_WRITE Definition

3.6 Miscellaneous Registers

In this chapter, the miscellaneous registers cover backlight control, interrupt, GPIO, and other
functionality registers.

REG_CPURESET Definition

31 3 2 1 0

reserved r/w

Offset: 0x20 Reset Value: 0x0

Bit 31 – 3: Reserved Bits

Bit 2: Control the reset of audio engine.

Bit 1: Control the reset of touch engine.

Bit 0: Control the reset of coprocessor engine.

Note: Write 1 to reset the corresponding engine. Write 0 to go back to normal working status.
Reading 1 means the engine is in reset status, and reading zero means the engine is in working
status.

Register Definition 80 – REG_CPURESET Definition

REG_MACRO_1 Definition

31 0

r/w

Offset: 0xDC Reset Value: 0x0

Bit 31 – 0: Display list command macro 1. The value of this register will be copied over to RAM_DL
to replace the display list command MACRO if its parameter is 1.

Register Definition 81 – REG_MACRO_1 Definition

REG_MACRO_0 Definition

31 0

r/w

Offset: 0xD8 Reset Value: 0x0

Bit 31 – 0: Display list command macro 0. The value of this register will be copied over to RAM_DL
to replace the display list command MACRO if its parameter is 0.

Register Definition 82 – REG_MACRO_0 Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 47
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_PWM_DUTY Definition

31 8 7 0

Reserved r/w

Offset: 0xD4 Reset Value: 0x80

Bit 31 – 8: Reserved Bits

Bit 7 – 0: These bits define the backlight PWM output duty cycle. The valid range is from 0 to 128. 0
means backlight completely off, 128 means backlight in max brightness.

Register Definition 83 – REG_PWM_DUTY Definition

REG_PWM_HZ Definition

31 14 13 0

Reserved r/w

Offset: 0xD0 Reset Value: 0xFA

Bit 31 – 14: Reserved Bits

Bit 13 – 0: These bits define the backlight PWM output frequency in HZ. The default is 250 Hz after
reset. The valid frequency is from 250Hz to 10000Hz.

Register Definition 84 – REG_PWM_HZ Definition

REG_INT_MASK Definition

31 8 7 0

Reserved r/w

Offset: 0xB0 Reset Value: 0xFF

Bit 31 – 8: Reserved Bits

Bit 7 – 0: These bits are used to mask the corresponding interrupt. 1 means to enable the
corresponding interrupt source, 0 means to disable the corresponding interrupt source. After reset,
all the interrupt source are eligible to trigger an interrupt by default.

Note: Refer to the section “Interrupts” in BT817/8 datasheet for more details.

Register Definition 85 – REG_INT_MASK Definition

REG_INT_EN Definition

31 1 0

Reserved r/w

Offset: 0xAC Reset Value: 0x0

Bit 31 – 1: Reserved bits

Bit 0: The host can set this bit to 1 to enable the global interrupt. To disable the global interrupt,
the host can set this bit to 0.

Note: Refer to the section “Interrupts” in BT817/8 datasheet for more details.

Register Definition 86 – REG_INT_EN Definition

REG_INT_FLAGS Definition

31 8 7 0

Reserved r/w

Offset: 0xA8 Reset Value: 0x0

Bit 31 – 8: Reserved Bits

Bit 7 – 0: These bits are interrupt flags. The host can read these bits to determine which interrupt

takes place. These bits are cleared automatically by reading. The host shall not write to this
register.

Note: Refer to the section “Interrupts” in BT817/8 datasheet for more details.

Register Definition 87 – REG_INT_FLAGS Definition

REG_GPIO_DIR Definition

31 8 7 6 2 1 0

Reserved r/w reserved r/w

Offset: 0x90 Reset Value: 0x0

Bit 31 – 8: Reserved Bits

Bit 7: It controls the direction of pin DISP.

Bit 6 – 2: Reserved Bits

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 48
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Bit 1: It controls the direction of GPIO1.

Bit 0: It controls the direction of GPIO0.

Note: 1 is for output, 0 is for input direction. This register is a legacy register for backward
compatibility only

Register Definition 88 – REG_GPIO_DIR Definition

REG_GPIO Definition

31 8 7 6 5 4 3 2 1 0

Reserved r/w

Offset: 0x94 Reset Value: 0x0

Bit 31 – 8: Reserved Bits

Bit 7 : It controls the high or low level of pin DISP.

Bit 6-5: Drive strength settings for pins GPIO0,GPIO1, CTP_RST_N:
 0b’00:5mA – default,

 0b’01:10mA,
 0b’10:15mA,
 0b’11:20mA

Bit 4: Drive strength settings for pins PCLK, DISP,VSYNC,HSYNC,DE, R,G,B, BACKLIGHT:
0b’0: 1.2mA – default, 0b’1: 2.4mA

Bit 3-2: Drive Strength Setting for pins MISO, MOSI, INT_N:
 0b’00:5mA – default,
 0b’01:10mA,
 0b’10:15mA,

 0b’11:20mA

Bit 1: It controls the high or low level of pin GPIO1.

Bit 0: It controls the high or low level of pin GPIO0.

Note: Refer to BT817/8 datasheet. This register is a legacy register for backward compatibility only.

Register Definition 89 – REG_GPIO Definition

REG_GPIOX_DIR Definition

31 16 15 14 4 3 0

Reserved r/w reserved r/w

Offset: 0x98 Reset Value: 0x8000

Bit 31 – 16: Reserved Bits

Bit 15: It controls the direction of pin DISP. The default value is 1, meaning output.

Bit 14 – 4: Reserved Bits

Bit 3: It controls the direction of GPIO3.

Bit 2: It controls the direction of GPIO2.

Bit 1: It controls the direction of GPIO1.

Bit 0: It controls the direction of GPIO0.

Note: 1 is for output,0 is for input direction

Register Definition 90 – REG_GPIOX_DIR Definition

REG_GPIOX Definition

31 16 15 14 13 12 11 10 9 8 4 3 0

Reserved r/w reserved r/w

Offset: 0x9C Reset Value: 0x8000

Bit 31 – 16: Reserved Bits

Bit 15: It controls the high or low level of pin DISP. 1 for high level (default) and 0 for low level.

Bit 14-13: Drive strength settings for pins GPIO0,GPIO1,GPIO2,GPIO3, CTP_RST_N:
 0b’00:5mA – default,
 0b’01:10mA,
 0b’10:15mA,
 0b’11:20mA

Bit 12: Drive strength settings for pins PCLK, DISP,VSYNC,HSYNC,DE, R,G,B, BACKLIGHT:
 0b’0: 1.2mA – default, 0b’1: 2.4mA

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 49
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Bit 11-10: Drive Strength Setting for pins MISO, MOSI, INT_N,IO2, IO3, SPIM_SCLK,
SPIM_SS_N, SPIM_MOSI, SPIM_MISO, SPIM_IO2, SPIM_IO3:
 0b’00:5mA – default,
 0b’01:10mA,

 0b’10:15mA,
 0b’11:20mA

Bit 9: It controls the type of pin INT_N.
 0b’0: Open Drain – default,
 0b’1: Push-pull

Bit 8 – 4: Reserved Bits

Bit 3: It controls the high or low level of pin GPIO3.

Bit 2: It controls the high or low level of pin GPIO2.

Bit 1: It controls the high or low level of pin GPIO1.

Bit 0: It controls the high or low level of pin GPIO0.

Note: Refer to BT817/8 datasheet for more details.

Register Definition 91 – REG_GPIOX Definition

REG_FREQUENCY Definition

31 0

r/w

Offset: 0xC Reset Value: 0x3938700

Bit 31 – 0: The main clock frequency is 60MHz by default. The value is in Hz. If the host selects the

alternative frequency, this register must be updated accordingly.

Register Definition 92 – REG_FREQUENCY Definition

REG_CLOCK Definition

31 0

r/o

Offset: 0x8 Reset Value: 0x0

Bit 31 – 0: These bits are set to zero after reset. The register counts the number of main clock cycles
since reset. If the main clock’s frequency is 60Mhz, it will wrap around after about 71 seconds.

Register Definition 93 – REG_CLOCK Definition

REG_FRAMES Definition

31 0

r/o

Offset: 0x4 Reset Value: 0x0

Bit 31 – 0: These bits are set to zero after reset. The register counts the number of screen frames.
If the refresh rate is 60Hz, it will wrap up till about 828 days after reset.

Register Definition 94 – REG_FRAMES Definition

REG_ID Definition

31 8 7 0

Reserved r/o

Offset: 0x0 Reset Value: 0x7C

Bit 31 – 8: Reserved Bits

Bit 7 – 0: These bits are the built-in ID of the chip. The value shall always be 0x7C. The host can
read this to determine if the chip belongs to the EVE series and is in working mode after booting up.

Register Definition 95 – REG_ID Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 50
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_SPI_WIDTH Definition

31 3 2 1 0

Reserved r/w

Offset: 0x188 Reset Value: 0x0

Bit 31 – 3: Reserved Bits

Bit 2: Extra dummy on SPI read transfer. Writing 1 to enable one extra dummy byte on SPI read
transfer.

Bit 1 – 0: SPI data bus width:
 0b’00: 1 bit – default

 0b’01: 2 bit (Dual-SPI)
 0b’10: 4 bit (Quad-SPI)
 0b’11: undefined

Note: Refer to BT81Xdatasheet for more details.

Register Definition 96 – REG_SPI_WIDTH Definition

REG_ADAPTIVE_FRAMERATE Definition

7 1 0

Reserved r/w

Offset: 0x57C Reset Value: 0x1

Bit 7 – 1: Reserved bits

Bit 0: Reduce the framerate during complex drawing.

 0: Disable
 1: Enable

Note: Please check if the LCD panel datasheet supports the variable frame rate.

Register Definition 97 – REG_ADAPTIVE_FRAMERATE Definition

REG_UNDERRUN Definition

31 0

r/o

Offset: 0x60C Reset Value: 0x0

Bit 31 – 0: It counts underrun lines. When a line underruns, it is incremented. An application can
sample it on each frame swap to determine if the previous frame suffered an underrun.

Note: BT817/8 specific register.

Register Definition 98 – REG_UNDERRUN Definition

REG_AH_HCYCLE_MAX Definition

31 12 11 0

Reserved r/w

Offset: 0x610 Reset Value: 0x0

Bit 11 – 0: The maximum PCLK count of horizontal line when adaptive HSYNC is enabled.
 Value 0 means adaptive HSYNC feature is disabled.
 The valid value shall be greater than REG_HCYCLE.

Bit 31 – 12: Reserved bits

Note: BT817/8 specific register.

Register Definition 99 – REG_AH_HCYCLE_MAX Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 51
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_PCLK_FREQ Definition

31 12 11 10 9 0

Reserved r/w r/w

Offset: 0x614 Reset Value: 0x8A1

Bit 31 – 12: Reserved bits

Bit 11 – 10: Configure the range of output fractional PCLK frequency for EXTSYNC mode. Refer to
BT817/8 datasheet for details.

Bit 9 - 0: Configure the output fractional PCLK frequency for EXTSYNC mode, i.e., REG_PCLK is
set to 1. Refer to BT817/8 datasheet for details.

Note: BT817/8 specific register.

It is recommended to refer to the table RGB PCLK Frequency in EXTSYNC mode in the Parallel RGB
Interface section of the BT817/8 datasheet which has recommended values.

Coprocessor command CMD_PCLKFREQ can be used to set the register too. See the section

CMD_PCLKFREQ for information on this command.

Register Definition 100 – REG_PCLK_FREQ Definition

REG_PCLK_2X Definition

7 1 0

Reserved r/w

Offset: 0x618 Reset Value: 0x0

Bit 0: graphics engine outputs 1 or 2 pixels per PCLK.
 0 means 1 pixel per clock,
 1 means 2 pixel per clock.

Bit 7 – 1: Reserved bits.

Note: BT817/8 specific register. When graphics engine outputs 2 pixels per PCLK, the values
loaded in the following registers must be even:

• REG_HSIZE
• REG_HOFFSET
• REG_HCYCLE
• REG_HSYNC0

• REG_HSYNC1

Register Definition 101 – REG_PCLK_2X Definition

3.7 Special Registers

The registers listed here are not located in RAM_REG. They are located in special addresses.

REG_TRACKER Definition

31 16 15 8 7 0

r/o reserved r/o

Offset: 0x7000 Reset Value: 0x0

Bit 31 – 16: These bits are set to indicate the tracking value for the tracked graphics objects. The

coprocessor calculates the tracking value that the touching point takes within the predefined range.
Please check the CMD_TRACK for more details.

Bit 15 – 8: Reserved Bits

Bit 7 - 0: These bits are set to indicate the tag value of a graphics object which is being touched.

Register Definition 102 – REG_TRACKER Definition

REG_TRACKER_1 Definition

31 16 15 8 7 0

r/o reserved r/o

Offset: 0x7004 Reset Value: 0x0

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 52
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Bit 31 – 16: These bits are set to indicate the tracking value for the tracked graphics objects. The
coprocessor calculates the tracking value that the touching point takes within the predefined range.
Please check the CMD_TRACK for more details.

Bit 15 – 8: Reserved Bits

Bit 7 – 0: These bits are set to indicate the tag value of a graphics object which is being touched as
the second point.

Note: It is only applicable for extended mode of CTSE.

Register Definition 103 – REG_TRACKER_1 Definition

REG_TRACKER_2 Definition

31 16 15 8 7 0

r/o reserved r/o

Offset: 0x7008 Reset Value: 0x0

Bit 31 – 16: These bits are set to indicate the tracking value for the tracked graphics objects. The

coprocessor calculates the tracking value that the touching point takes within the predefined range.
Please check the CMD_TRACK for more details.

Bit 15 – 8: Reserved Bits

Bit 7 – 0: These bits are set to indicate the tag value of a graphics object which is being touched as

the third point.

Note: It is only applicable for extended mode of CTSE.

Register Definition 104 – REG_TRACKER_2 Definition

REG_TRACKER_3 Definition

31 16 15 8 7 0

r/o reserved r/o

Offset: 0x700C Reset Value: 0x0

Bit 31 – 16: These bits are set to indicate the tracking value for the tracked graphics objects. The
coprocessor calculates the tracking value that the touching point takes within the predefined range.
Please check the CMD_TRACK for more details.

Bit 15 – 8: Reserved Bits

Bit 7 – 0: These bits are set to indicate the tag value of a graphics object which is being touched as
the fourth point.

Note: It is only applicable for extended mode of CTSE.

Register Definition 105 – REG_TRACKER_3 Definition

REG_TRACKER_4 Definition

31 16 15 8 7 0

r/o reserved r/o

Offset: 0x7010 Reset Value: 0x0

Bit 31 – 16: These bits are set to indicate the tracking value for the tracked graphics objects. The

coprocessor calculates the tracking value that the touching point takes within the predefined range.
Please check the CMD_TRACK for more details.

Bit 15 – 8: Reserved Bits

Bit 7 – 0: These bits are set to indicate the tag value of a graphics object which is being touched as
the fifth point.

Note: It is only applicable for extended mode of CTSE.

Register Definition 106 – REG_TRACKER_4 Definition

REG_MEDIAFIFO_READ Definition

31 0

r/o

Offset: 0x7014 Reset Value: 0x0

Bit 31 – 0: The value specifies the read pointer pointing to the address in RAM_G as the media
FIFO.

Register Definition 107 – REG_MEDIAFIFO_READ Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 53
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

REG_MEDIAFIFO_WRITE Definition

31 0

w/o

Offset: 0x7018 Reset Value: 0x0

Bit 31 – 0: The value specifies the write pointer pointing to the address in RAM_G as the media

FIFO.

Register Definition 108 – REG_MEDIAFIFO_WRITE Definition

REG_PLAY_CONTROL Definition

7 0

w/o

Offset: 0x714E Reset Value: 0x1

Bit 7 – 0: video playback control. The following values are defined:
0: pause playback

1: play normally
0xFF: exit playback

Register Definition 109 – REG_PLAY_CONTROL Definition

REG_ANIM_ACTIVE Definition

31 0

r/o

Offset: 0x702C Reset Value: 0x0

Bit 31 – 0: 32-bit mask of currently playing animations. Each bit indicates the active state of

animation channel. 0 means animation ends and 1 means animation runs.

Note: Only applicable for the animation channel is played with ANIM_ONCE flag.

Register Definition 110 – REG_ANIM_ACTIVE Definition

REG_COPRO_PATCH_PTR Definition

15 0

r/o

Offset: 0x7162 Reset Value: NA

Bit 15 – 0: The address of coprocessor patch pointer.

Note: This register shall be only used for the coprocessor recovery purpose. Refer to Coprocessor
Faults.

Register Definition 111 – REG_COPRO_PATCH_PTR Definition

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 54
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4 Display List Commands

The graphics engine takes the instructions from display list memory RAM_DL in the form of
commands. Each command is 4 bytes long and one display list can be filled with up to 2048
commands as the size of RAM_DL is 8K bytes. The graphics engine performs the respective
operation according to the definition of commands.

4.1 Graphics State

The graphics state which controls the effects of a drawing action is stored in the graphics context.

Individual pieces of state can be changed by the appropriate display list commands and the entire
current state can be saved and restored using the SAVE_CONTEXT and RESTORE_CONTEXT
commands.

Note that the bitmap drawing state is special: Although the bitmap handle is part of the graphics
context, the parameters for each bitmap handle are not part of the graphics context. They are neither
saved nor restored by SAVE_CONTEXT and RESTORE_CONTEXT. These parameters are changed

using the BITMAP_SOURCE, BITMAP_LAYOUT/BITMAP_LAYOUT_H and
BITMAP_SIZE/BITMAP_SIZE_H commands. Once these parameters are set up, they can be
utilized at any display list by referencing the same bitmap handle until they were changed.

SAVE_CONTEXT and RESTORE_CONTEXT is comprised of a 4-level stack in addition to the current
graphics context. The table below details the various parameters in the graphics context.

Parameters Default values Commands

func & ref ALWAYS, 0 ALPHA_FUNC

func & ref ALWAYS, 0 STENCIL_FUNC

Src & dst SRC_ALPHA,
ONE_MINUS_SRC_ALPHA

BLEND_FUNC

Cell value 0 CELL

Alpha value 0 COLOR_A

Red, Blue, Green colors (255,255,255) COLOR_RGB

Line width in 1/16 pixels 16 LINE_WIDTH

Point size in 1/16 pixels 16 POINT_SIZE

Width & height of scissor HSIZE,2048 SCISSOR_SIZE

Starting coordinates of scissor (x, y) = (0,0) SCISSOR_XY

Current bitmap handle 0 BITMAP_HANDLE

Bitmap transform coefficients +1.0,0,0,0,+1.0,0 BITMAP_TRANSFORM_A-F

Stencil clear value 0 CLEAR_STENCIL

Tag clear value 0 CLEAR_TAG

Mask value of stencil 255 STENCIL_MASK

spass and sfail KEEP,KEEP STENCIL_OP

Tag buffer value 255 TAG

Tag mask value 1 TAG_MASK

Alpha clear value 0 CLEAR_COLOR_A

RGB clear color (0,0,0) CLEAR_COLOR_RGB

Palette source address RAM_G PALETTE_SOURCE

Units of pixel precision 1/16 pixel VERTEX_FORMAT, VERTEX2F

Table 10 – Graphics Context

4.2 Command Encoding

Each display list command has a 32-bit encoding. The most significant bits of the code determine
the command. Command parameters (if any) are present in the least significant bits. Any bits
marked as “reserved” must be zero.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 55
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.3 Command Groups

4.3.1 Setting Graphics State

ALPHA_FUNC set the alpha test function

BITMAP_EXT_FORMAT specify the extended format of the bitmap

BITMAP_HANDLE set the bitmap handle

BITMAP_LAYOUT/

BITMAP_LAYOUT_H

set the source bitmap memory format and layout for the current

handle

BITMAP_SIZE/
BITMAP_SIZE_H

set the screen drawing of bitmaps for the current handle

BITMAP_SOURCE set the source address for bitmap graphics. It can be a flash
address.

BITMAP_SWIZZLE specify the color channel swizzle for a bitmap

BITMAP_TRANSFORM_A-F set the components of the bitmap transform matrix

BLEND_FUNC set pixel arithmetic function

CELL set the bitmap cell number for the VERTEX2F command

CLEAR clear buffers to preset values

CLEAR_COLOR_A set clear value for the alpha channel

CLEAR_COLOR_RGB set clear values for red, green and blue channels

CLEAR_STENCIL set clear value for the stencil buffer

CLEAR_TAG set clear value for the tag buffer

COLOR_A set the current color alpha

COLOR_MASK enable or disable writing of color components

COLOR_RGB set the current color red, green and blue

LINE_WIDTH set the line width

POINT_SIZE set point size

RESTORE_CONTEXT restore the current graphics context from the context stack

SAVE_CONTEXT push the current graphics context on the context stack

SCISSOR_SIZE set the size of the scissor clip rectangle

SCISSOR_XY set the top left corner of the scissor clip rectangle

STENCIL_FUNC set function and reference value for stencil testing

STENCIL_MASK control the writing of individual bits in the stencil planes

STENCIL_OP set stencil test actions

TAG set the current tag value

TAG_MASK control the writing of the tag buffer

VERTEX_FORMAT set the precision of VERTEX2F coordinates

VERTEX_TRANSLATE_X specify the vertex transformation’s X translation component

VERTEX_TRANSLATE_Y specify the vertex transformation’s Y translation component

PALETTE_SOURCE Specify the base address of the palette

4.3.2 Drawing Actions

BEGIN start drawing a graphics primitive

END finish drawing a graphics primitive

VERTEX2F supply a vertex with fractional coordinates

VERTEX2II supply a vertex with unsigned coordinates

4.3.3 Execution Control

NOP No Operation

JUMP execute commands at another location in the display list

MACRO execute a single command from a macro register

CALL execute a sequence of commands at another location in the display list

RETURN return from a previous CALL command

DISPLAY end the display list

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 56
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.4 ALPHA_FUNC

Specify the alpha test function

Encoding

31 24 23 11 10 8 7 0

0x09 reserved func ref

Parameters

func
Specifies the test function, one of NEVER, LESS, LEQUAL, GREATER, GEQUAL,
EQUAL, NOTEQUAL, or ALWAYS. The initial value is ALWAYS (7)

NAME VALUE

NEVER 0

LESS 1

LEQUAL 2

GREATER 3

GEQUAL 4

EQUAL 5

NOTEQUAL 6

ALWAYS 7

ref
Specifies the reference value for the alpha test. The initial value is 0

Graphics context

The values of func and ref are part of the graphics context, as described in section 4.1

See also

None

4.5 BEGIN

Begin drawing a graphics primitive

Encoding

31 24 23 4 3 0

0x1F reserved prim

Parameters

prim
The graphics primitive to be executed. The valid values are defined as below:

Name Value Description

BITMAPS 1 Bitmap drawing primitive

POINTS 2 Point drawing primitive

LINES 3 Line drawing primitive

LINE_STRIP 4 Line strip drawing primitive

EDGE_STRIP_R 5 Edge strip right side drawing primitive

EDGE_STRIP_L 6 Edge strip left side drawing primitive

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 57
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

EDGE_STRIP_A 7 Edge strip above drawing primitive

EDGE_STRIP_B 8 Edge strip below side drawing primitive

RECTS 9 Rectangle drawing primitive

Table 11 – Graphics Primitive Definition

Description

All primitives supported are defined in the table above. The primitive to be drawn is selected by the
BEGIN command. Once the primitive is selected, it will be valid till the new primitive is selected by
the BEGIN command.

Please note that the primitive drawing operation will not be performed until VERTEX2II or

VERTEX2F is executed.

Examples

Drawing points, lines and bitmaps:

Graphics context

None

See also

END

4.6 BITMAP_EXT_FORMAT

Specify the extended format of the bitmap

Encoding

31 24 23 16 15 0

0x2E reserved format

Parameters

format
Bitmap pixel format.

Description

If BITMAP_LAYOUT specifies a format for GLFORMAT, then the format is taken from

BITMAP_EXT_FORMAT instead.

dl(BEGIN(POINTS));

dl(VERTEX2II(50, 5, 0, 0));

dl(VERTEX2II(110, 15, 0, 0));

dl(BEGIN(LINES));

dl(VERTEX2II(50, 45, 0, 0));

dl(VERTEX2II(110, 55, 0, 0));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(50, 65, 31, 0x45));

dl(VERTEX2II(110, 75, 31, 0x46));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 58
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Valid values for the field format are:

Format Name Value Bits per
Pixel

ARGB1555 0 16

L1 1 1

L4 2 4

L8 3 8

RGB332 4 8

ARGB2 5 8

ARGB4 6 16

RGB565 7 16

TEXT8X8 9 8

TEXTVGA 10 8

BARGRAPH 11 8

PALETTED565 14 8

PALETTED4444 15 8

PALETTED8 16 8

L2 17 2

COMPRESSED_RGBA_ASTC_4x4_KHR 37808 8.00

COMPRESSED_RGBA_ASTC_5x4_KHR 37809 6.40

COMPRESSED_RGBA_ASTC_5x5_KHR 37810 5.12

COMPRESSED_RGBA_ASTC_6x5_KHR 37811 4.27

COMPRESSED_RGBA_ASTC_6x6_KHR 37812 3.56

COMPRESSED_RGBA_ASTC_8x5_KHR 37813 3.20

COMPRESSED_RGBA_ASTC_8x6_KHR 37814 2.67

COMPRESSED_RGBA_ASTC_8x8_KHR 37815 2.00

COMPRESSED_RGBA_ASTC_10x5_KHR 37816 2.56

COMPRESSED_RGBA_ASTC_10x6_KHR 37817 2.13

COMPRESSED_RGBA_ASTC_10x8_KHR 37818 1.60

COMPRESSED_RGBA_ASTC_10x10_KHR 37819 1.28

COMPRESSED_RGBA_ASTC_12x10_KHR 37820 1.07

COMPRESSED_RGBA_ASTC_12x12_KHR 37821 0.89

Table 12 – Bitmap formats and bits per pixel

Graphics context

None

See also

BITMAP_LAYOUT

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 59
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.7 BITMAP_HANDLE

Specify the bitmap handle

Encoding

31 24 23 5 4 0

0x05 reserved handle

Parameters
handle
Bitmap handle. The initial value is 0. The valid value range is from 0 to 31.

Description

By default, bitmap handles 16 to 31 are used for built-in font and 15 is used as scratch bitmap

handle by coprocessor engine commands CMD_GRADIENT, CMD_BUTTON and CMD_KEYS.

Graphics context

The value of handle is part of the graphics context, as described in section 4.1.

See also

BITMAP_LAYOUT, BITMAP_SIZE

4.8 BITMAP_LAYOUT

Specify the source bitmap memory format and layout for the current handle.

Encoding

31 24 23 19 18 9 8 0

0x07 format linestride height

Parameters

format

Bitmap pixel format. The valid range is from 0 to 17 and defined as per the table below.

Name Value Bits/pixel Alpha
bits

Red bits Green
bits

Blue
bits

ARGB1555 0 16 1 5 5 5

L1 1 1 1 0 0 0

L4 2 4 4 0 0 0

L8 3 8 8 0 0 0

RGB332 4 8 0 3 3 2

ARGB2 5 8 2 2 2 2

ARGB4 6 16 4 4 4 4

RGB565 7 16 0 5 6 5

TEXT8X8 9 - - - - -

TEXTVGA 10 - - - - -

BARGRAPH 11 - - - - -

PALETTED565 14 8 0 5 6 5

PALETTED4444 15 8 4 4 4 4

PALETTED8 16 8 8 8 8 8

L2 17 2 2 0 0 0

GLFORMAT 31 Check BITMAP_EXT_FORMAT

Table 13 – BITMAP_LAYOUT Format List

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 60
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples of various supported bitmap formats (except TXTVGA) are shown as below:

BARGRAPH – render data as a bar graph. Looks up the x coordinate in a byte array, then gives an
opaque pixel if the byte value is less than y, otherwise a transparent pixel. The result is a bar graph

of the bitmap data. A maximum of screen widthx256 size bitmap can be drawn using the BARGRAPH
format. Orientation, width and height of the graph can be altered using the bitmap transform matrix.

TEXT8X8 – lookup in a fixed 8x8 font. The bitmap is a byte array present in the graphics ram and
each byte indexes into an internal 8x8 CP4371 font (built-in bitmap handles 16 & 17 are used for
drawing TEXT8X8 format). The result is that the bitmap acts like a character grid. A single bitmap

can be drawn which covers all or part of the display; each byte in the bitmap data corresponds to

one 8x8 pixel character cell.

TEXTVGA – lookup in a fixed 8x16 font with TEXTVGA syntax. The bitmap is a TEXTVGA array
present in the graphics ram, each element indexes into an internal 8x16 CP437 font (built-in bitmap
handles 18 & 19 are used for drawing TEXTVGA format with control information such as background
color, foreground color and cursor etc.). The result is that the bitmap acts like a TEXTVGA grid. A

single bitmap can be drawn which covers all or part of the display; each TEXTVGA data type in the
bitmap corresponds to one 8x16 pixel character cell.

1 https://en.wikipedia.org/wiki/Code_page_437

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 61
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

linestride – Bitmap line strides, in bytes. This represents the amount of memory used for each line
of bitmap pixels.

For L1, L2, L4 format, the necessary data has to be padded to make it byte aligned. Normally, it
can be calculated with the following formula:

linestride = width ∗ byte/pixel

For example, if one bitmap is 64x32 pixels in L4 format, the line stride shall be

(64 ∗ 1/2 = 32)

height - Bitmap height, in lines

Description

For more details about memory layout according to pixel format, refer to the figures below:

L1 Format

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7

L2 Format

Bit 7 6 Bit 5 4 Bit 3 2 Bit 1 0

Pixel 0 Pixel 1 Pixel 2 Pixel 3

L4 Format

7 4 3 0

Pixel 0 Pixel 1

L8 Format

7 0

Pixel 0

Table 14 – L1/L2/L4/L8 Pixel Format

ARGB2 Format

7 6 5 4 3 2 1 0

Alpha Chanel Red Channel Green Channel Blue Channel

RGB332 Format

7 5 4 2 1 0

Red Channel Green Channel Blue Channel

Table 15 – ARGB2/RGB332 Pixel Format

RGB565/PALETTED565 Format

15 11 10 5 4 0

Red Channel Green Channel Blue Channel

Table 16 – RGB565/PALETTED565 Pixel Format

ARGB1555 Format

15 14 10 9 5 4 0

Alpha
Chanel

Red Channel Green Channel Blue Channel

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 62
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

ARGB4/PALETTED4444 Format

15 12 11 8 7 4 3 0

Alpha Chanel Red Channel Green Channel Blue Channel

Table 17 – ARGB1555/ARGB4/PALETTED4444 Pixel Format

PALETTED8 Format

31 24 23 16 15 8 7 0

Alpha Chanel Red Channel Green Channel Blue Channel

Table 18 – PALETTED8 Pixel Format

 Note: PALETTED8 is 8 bits per pixel as each pixel is represented by an 8-bit index value in the look-up
table. It has a color depth of 24-bits and 8-bit alpha.

Graphics Context

None

Note: PALETTED8 format is supported indirectly and it is different from PALETTED format in

FT80X. To render Alpha, Red, Green and Blue channels, multi-pass drawing action is required.

The following display list snippet shows:

Code Snippet 10 – PALETTED8 Drawing Example

See also

BITMAP_HANDLE, BITMAP_SIZE, BITMAP_SOURCE, PALETTE_SOURCE

//addr_pal is the starting address of palette lookup table in RAM_G

//bitmap source(palette indices) is starting from address 0

dl(BITMAP_HANDLE(0))

dl(BITMAP_LAYOUT(PALETTED8, width, height))

dl(BITMAP_SIZE(NEAREST, BORDER, BORDER, width, height))

dl(BITMAP_SOURCE(0)) //bitmap source(palette indices)

dl(BEGIN(BITMAPS))

dl(BLEND_FUNC(ONE, ZERO))

//Draw Alpha channel

dl(COLOR_MASK(0,0,0,1))

dl(PALETTE_SOURCE(addr_pal+3))

dl(VERTEX2II(0, 0, 0, 0))

//Draw Red channel

dl(BLEND_FUNC(DST_ALPHA, ONE_MINUS_DST_ALPHA))

dl(COLOR_MASK(1,0,0,0))

dl(PALETTE_SOURCE (addr_pal+2))

dl(VERTEX2II (0, 0, 0, 0))

//Draw Green channel

dl(COLOR_MASK(0,1,0,0))

dl(PALETTE_SOURCE(addr_pal + 1))

dl(VERTEX2II(0, 0, 0, 0))

//Draw Blue channel

dl(COLOR_MASK(0,0,1,0))

dl(PALETTE_SOURCE(addr_pal))

dl(VERTEX2II(0, 0, 0, 0))

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 63
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.9 BITMAP_LAYOUT_H

Specify the 2 most significant bits of the source bitmap memory format and layout for the current
handle.

Encoding

31 24 23 4 3 2 1 0

0x28 reserved linestride height

Parameters

linestride

The 2 most significant bits of the 12-bit line stride parameter value specified to

BITMAP_LAYOUT.

height
The 2 most significant bits of the 11-bit height parameter value specified to
BITMAP_LAYOUT.

Description

This command is the extension command of BITMAP_LAYOUT for bitmap larger than 511 by 511
pixels.

Examples

NA

See also

BITMAP_LAYOUT

4.10 BITMAP_SIZE

Specify the screen drawing of bitmaps for the current handle

Encoding

31 24 23 21 20 19 18 17 9 8 0

0x08

r
e
s
e
r
v
e
d

filte
r

w
r
a
p

x

w
r
a
p

y

width

height

Parameters

filter
Bitmap filtering mode, one of NEAREST or BILINEAR.
The value of NEAREST is 0 and the value of BILINEAR is 1.

wrapx
Bitmap x wrap mode, one of REPEAT or BORDER
The value of BORDER is 0 and the value of REPEAT is 1.

wrapy
Bitmap y wrap mode, one of REPEAT or BORDER
The value of BORDER is 0 and the value of REPEAT is 1.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 64
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

width
Drawn bitmap width, in pixels. From 1 to 511. Zero has special meaning.

height
Drawn bitmap height, in pixels. From 1 to 511. Zero has special meaning.

Description

This command controls the drawing of bitmaps: the on-screen size of the bitmap, the behavior for
wrapping, and the filtering function. Please note that if wrapx or wrapy is REPEAT then the
corresponding memory layout dimension (BITMAP_LAYOUT line stride or height) must be power of

two, otherwise the result is undefined.

For width and height, the value from 1 to 511 means the bitmap width and height in pixel. The
value zero has the special meaning if there are no BITMAP_SIZE_H present before or a high bit in

BITMAP_SIZE_H is zero: it means 2048 pixels, other than 0 pixels.

4.11 BITMAP_SIZE_H

Specify the 2 most significant bits of bitmaps dimension for the current handle.

Encoding

31 24 23 4 3 2 1 0

0x29 reserved width height

Parameters

width
2 most significant bits of bitmap width. The initial value is zero.

Height

2 most significant bits of bitmap height. The initial value is zero.

Description

This command is the extension command of BITMAP_SIZE for bitmap larger than 511 by 511 pixels.

Graphics context

None

See also

BITMAP_HANDLE, BITMAP_LAYOUT, BITMAP_SOURCE, BITMAP_SIZE

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 65
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.12 BITMAP_SOURCE

Specify the source address of bitmap data in RAM_G or flash memory.

Encoding

31 24 23 0

0x01 addr

Parameters

addr

Bitmap address in RAM_G or flash memory, aligned with respect to the bitmap format.
For example, if the bitmap format is RGB565/ARGB4/ARGB1555, the bitmap source

shall be aligned to 2 bytes.

Description

The bitmap source address specifies the address of the bitmap graphic data.

If bit 23 is 0, then bits 0-22 give the byte address in RAM_G.
If bit 23 is 1, then bits 0-22, multiplied by 32, specifies the byte address in external flash memory.

Note that in some rare cases when setting bitmap source address in RAM_G where the bitmap source
address may be negative (such as loading a font which begins at address RAM_G+0 and has pointer
to raw data calculated to be negative) the value passed to BITMAP_SOURCE should be masked so

that only bits 0-22 are written to ensure that bit 23 is not written to 1.

For example, if addr is (0x800000 | 422), the byte address in external flash memory refers to
13504(422*32).

However, only bitmap data of ASTC specific format can be rendered directly from flash memory. For

the bitmap data of any non-ASTC specific format in flash memory, CMD_FLASHREAD is required

to copy the data from flash into RAM_G so that EVE can render it correctly.

Examples

Drawing a 64 x 64 bitmap, loaded at address 0:

Using the same graphics data, but with source and size changed
to show only a 32 x 32 detail:

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_SIZE(NEAREST, BORDER, BORDER, 64, 64));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(48, 28, 0, 0));

dl(BITMAP_SOURCE(128 * 16 + 32));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_SIZE(NEAREST, BORDER, BORDER, 32, 32));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(48, 28, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 66
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Display one 800x480 image by using extended display list commands mentioned above:

Graphics context

None

See also

BITMAP_LAYOUT, BITMAP_SIZE

4.13 BITMAP_SWIZZLE

Set the source for the red, green, blue and alpha channels of a bitmap.

Encoding

31 24 23 12 11 9 8 6 5 3 2 0

0x2f reserved r g b a

Parameters

r
red component source channel

 g
 green component source channel

 b
 blue component source channel

 a
 alpha component source channel

Description

Bitmap swizzle allows the channels of the bitmap to be exchanged or copied into the final color
channels. Each final color component can be sourced from any of the bitmap color components, or
can be set to zero or one. Valid values for each source are:

Name Value Description

ZERO 0 Set the source channel to zero

ONE 1 Set the source channel to 1

RED 2
Specify RED component as source
channel

dl(BITMAP_HANDLE(0));

dl(BITMAP_SOURCE(0));

dl(BITMAP_SIZE_H(1, 0));

dl(BITMAP_SIZE(NEAREST, BORDER, BORDER, 288, 480));

dl(BITMAP_LAYOUT_H(1, 0));

dl(BITMAP_LAYOUT(ARGB1555, 576, 480));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(76, 25, 0, 0));

dl(END());

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 67
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

GREEN 3
Specify GREEN component as
source channel

BLUE 4
Specify BLUE component as source
channel

ALPHA 5
Specify ALPHA component as
source channel

Bitmap swizzle is only applied when the format parameter of BITMAP_LAYOUT is specified as
GLFORMAT. Otherwise, the four components are in their default order. The default swizzle is (RED,
GREEN, BLUE, ALPHA)

Note: Please refer to OpenGL API specification for more details

Examples

Bitmap drawn with default swizzle, and with red/blue exchanged:

Red, green, and blue channels extracted to create three grayscale images:

Graphics Context

None

See also

None

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(GLFORMAT, 128, 64));

dl(BITMAP_EXT_FORMAT(RGB565));

dl(BITMAP_SIZE(NEAREST, BORDER, BORDER, 64, 64));

dl(BEGIN(BITMAPS));

dl(BITMAP_SWIZZLE(RED, GREEN, BLUE, ALPHA));

dl(VERTEX2II(8, 28, 0, 0));

dl(BITMAP_SWIZZLE(BLUE, GREEN, RED, ALPHA));

dl(VERTEX2II(88, 28, 0, 0));

dl(BITMAP_LAYOUT(GLFORMAT, 128, 64));

dl(BITMAP_EXT_FORMAT(RGB565));

dl(BEGIN(BITMAPS));

dl(BITMAP_SWIZZLE(RED, RED, RED, ALPHA));

dl(VERTEX2II(0, 0, 0, 0));

dl(BITMAP_SWIZZLE(GREEN, GREEN, GREEN, ALPHA));

dl(VERTEX2II(48, 28, 0, 0));

dl(BITMAP_SWIZZLE(BLUE, BLUE, BLUE, ALPHA));

dl(VERTEX2II(96, 56, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 68
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.14 BITMAP_TRANSFORM_A

Specify the A coefficient of the bitmap transform matrix.

Encoding

31 24 23 18 17 16 0

0x15 reserved p v

Parameters

p
Precision control: 0 is 8.8, 1 is 1.15. The initial value is 0.

v

A component of the bitmap transform matrix, in signed 8.8 or 1.15 fixed point form.
The initial value is 256.

Note: The parameters of this command are changed in BT81X.

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform functionalities such as
scaling, rotation and translation. These are similar to OpenGL transform functionality.

Examples

A value of 0.5 (128) causes the bitmap appear double width:

A value of 2.0 (512) gives a half-width bitmap:

Graphics Context

The value of p,v is part of the graphics context, as described in section 4.1

See also

None

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_A(128));

dl(BITMAP_SIZE(NEAREST, BORDER, BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0));

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_A(512));

dl(BITMAP_SIZE(NEAREST, BORDER, BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 69
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.15 BITMAP_TRANSFORM_B

Specify the b coefficient of the bitmap transform matrix

Encoding

31 24 23 18 17 16 0

0x16 reserved p v

Parameters

p
Precision control: 0 is 8.8, 1 is 1.15.The initial value is 0.

v

The component of the bitmap transform matrix, in signed 8.8 or 1.15 fixed point form.
The initial value is 0.

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform functionalities such as
scaling, rotation and translation. These are similar to OpenGL transform functionality.

Note: The parameters of this command are changed in BT81X.

Graphics context

The value of p, v is part of the graphics context, as described in section 4.1.

See also

None

4.16 BITMAP_TRANSFORM_C

Specify the 𝑐 coefficient of the bitmap transform matrix

Encoding

31

24

23 0

0x17 c

Parameters

c
The 𝑐 component of the bitmap transform matrix, in signed 15.8 bit fixed-point form. The

initial value is 0.

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform functionalities such as

scaling, rotation and translation. These are similar to OpenGL transform functionality.

Graphics context

The value of c is part of the graphics context, as described in section 4.1.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 70
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

See also

None

4.17 BITMAP_TRANSFORM_D

Specify the d coefficient of the bitmap transform matrix

Encoding

31 24 23 18 17 16 0

0x18 reserved p v

Parameters

p
Precision control: 0 is 8.8, 1 is 1.15. The initial value is 0.

v
The d component of the bitmap transform matrix, in signed 8.8 or 1.15 fixed point form.

The initial value is 0.

Note: The parameters of this command are changed in BT81X.

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform functionalities such as
scaling, rotation and translation. These are similar to OpenGL transform functionality.

Graphics context

The value of p, v of the graphics context, as described in section 4.1.

See also

None

4.18 BITMAP_TRANSFORM_E

Specify the E coefficient of the bitmap transform matrix.

Encoding

31 24 23 18 17 16 0

0x19 reserved p v

Parameters

p
Precision control: 0 is 8.8, 1 is 1.15. The initial value is 0.

v
The e component of the bitmap transform matrix, in signed 8.8 or 1.15 fixed point form.

The initial value is 256.

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform functionalities such as
scaling, rotation and translation. These are similar to OpenGL transform functionality.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 71
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Note: The parameters of this command are changed in BT81X.

Examples

A value of 0.5 (128) causes the bitmap appear double height:

A value of 2.0 (512) gives a half-height bitmap:

Graphics context

The value of p and v of the graphics context, as described in section 4.1

See also

None

4.19 BITMAP_TRANSFORM_F

Specify the f coefficient of the bitmap transform matrix

Encoding

31 24 23 0

0x1A f

Parameters

f
The f component of the bitmap transform matrix, in signed 15.8-bit fixed-point form. The

initial value is 0.

Description

BITMAP_TRANSFORM_A-F coefficients are used to perform bitmap transform functionalities such
as scaling, rotation and translation. These are similar to OpenGL transformation functionality.

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_E(512));

dl(BITMAP_SIZE(NEAREST, BORDER, BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0))

dl(BITMAP_SOURCE(0));

dl(BITMAP_LAYOUT(RGB565, 128, 64));

dl(BITMAP_TRANSFORM_E(128));

dl(BITMAP_SIZE(NEAREST, BORDER, BORDER, 128, 128));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(16, 0, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 72
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Graphics context

The value of f is part of the graphics context, as described in section 4.1.

See also

None

4.20 BLEND_FUNC

Specify pixel arithmetic

Encoding

31 24 23 6 5 3 2 0

0x0B reserved src dst

Parameters

src
Specifies how the source blending factor is computed. One of ZERO, ONE, SRC_ALPHA,
DST_ALPHA, ONE_MINUS_SRC_ALPHA or ONE_MINUS_DST_ALPHA. The initial value is
SRC_ALPHA (2).

dst

Specifies how the destination blending factor is computed, one of the same constants as src.
The initial value is ONE_MINUS_SRC_ALPHA(4)

Name Value Description

ZERO 0 Check OpenGL definition

ONE 1 Check OpenGL definition

SRC_ALPHA 2 Check OpenGL definition

DST_ALPHA 3 Check OpenGL definition

ONE_MINUS_SRC_ALPHA 4 Check OpenGL definition

ONE_MINUS_DST_ALPHA 5 Check OpenGL definition

Table 19 – BLEND_FUNC Constant Value Definition

Description

The blend function controls how new color values are combined with the values already in the color

buffer. Given a pixel value source and a previous value in the color buffer destination, the computed
color is:

𝑠𝑜𝑢𝑟𝑐𝑒 × src + 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 × dst

For each color channel: red, green, blue and alpha.

Examples

The default blend function of (SRC_ALPHA, ONE_MINUS_SRC_ALPHA) causes drawing to overlay the
destination using the alpha value:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 73
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

A destination factor of zero means that destination pixels are not used:

 Using the source alpha to control how much of the destination to keep:

Graphics context

The values of src and dst are part of the graphics context, as described in section 4.1.

See also

COLOR_A

4.21 CALL

Execute a sequence of commands at another location in the display list

Encoding

31 24 23 16 15 0

0x1D reserved dest

Parameters

dest
The display list number which the display command is to be switched. EVE has the stack to

store the return address. To come back to the next command of source address, the RETURN

command can help.

dl(BEGIN(BITMAPS));

dl(BLEND_FUNC(SRC_ALPHA, ZERO));

dl(VERTEX2II(50, 30, 31, 0x47));

dl(COLOR_A(128));

dl(VERTEX2II(60, 40, 31, 0x47));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(50, 30, 31, 0x47));

dl(COLOR_A(128));

dl(VERTEX2II(60, 40, 31, 0x47));

dl(BEGIN(BITMAPS));

dl(BLEND_FUNC(ZERO, SRC_ALPHA));

dl(VERTEX2II(50, 30, 31, 0x47));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 74
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The valid range is from 0 to 2047(sizeof(RAM_DL)/4-1).

Description

CALL and RETURN have a 4-level stack in addition to the current pointer. Any additional

CALL/RETURN done will lead to unexpected behavior.

Graphics context

None

See also

JUMP, RETURN

4.22 CELL

Specify the bitmap cell number for the VERTEX2F command.

Encoding

31 24 23 7 6 0

0x06 reserved cell

Parameters

cell
bitmap cell number. The initial value is 0

Graphics context

The value of cell is part of the graphics context, as described in section 4.1.

See also

None

4.23 CLEAR

Clear buffers to preset values

Encoding

31 24 23 3 2 1 0

0x26 reserved c s t

Parameters

c
Clear color buffer. Setting this bit to 1 will clear the color buffer to the preset value. Setting
this bit to 0 will maintain the color buffer with an unchanged value. The preset value is
defined in command CLEAR_COLOR_RGB for RGB channel and CLEAR_COLOR_A for alpha
channel.

s
Clear stencil buffer. Setting this bit to 1 will clear the stencil buffer to the preset value. Setting
this bit to 0 will maintain the stencil buffer with an unchanged value. The preset value is defined
in command CLEAR_STENCIL.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 75
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

t
Clear tag buffer. Setting this bit to 1 will clear the tag buffer to the preset value. Setting this
bit to 0 will maintain the tag buffer with an unchanged value. The preset value is defined in
command CLEAR_TAG.

Description

The scissor test and the buffer write masks affect the operation of the clear. Scissor limits the cleared
rectangle, and the buffer write masks limit the affected buffers. The state of the alpha function,
blend function, and stenciling do not affect the clear.

Examples

To clear the screen to bright blue:

To clear part of the screen to gray, part to blue using scissor rectangles:

Graphics context

None

See also

CLEAR_COLOR_A, CLEAR_STENCIL, CLEAR_TAG, CLEAR_COLOR_RGB

4.24 CLEAR_COLOR_A

Specify clear value for the alpha channel

Encoding

31 24 23 8 7 0

0x0F reserved alpha

Parameters

alpha

 Alpha value used when the color buffer is cleared. The initial value is 0.

dl(CLEAR_COLOR_RGB(100, 100, 100));

dl(CLEAR(1, 1, 1));

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(SCISSOR_SIZE(30, 120));

dl(CLEAR(1, 1, 1));

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(CLEAR(1, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 76
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Graphics context

The value of alpha is part of the graphics context, as described in section 4.1.

See also

CLEAR_COLOR_RGB, CLEAR

4.25 CLEAR_COLOR_RGB

Specify clear values for red, green and blue channels

Encoding

31

24

23 16 15 8 7 0

0x02 red blue green

Parameters

red
Red value used when the color buffer is cleared. The initial value is 0.

green
Green value used when the color buffer is cleared. The initial value is 0.

blue
Blue value used when the color buffer is cleared. The initial value is 0.

Description

Sets the color values used by a following CLEAR.

Examples

To clear the screen to bright blue:

To clear part of the screen to gray, part to blue using scissor rectangles:

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(CLEAR(1, 1, 1));

dl(CLEAR_COLOR_RGB(100, 100, 100));

dl(CLEAR(1, 1, 1));

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(SCISSOR_SIZE(30, 120));

dl(CLEAR(1, 1, 1));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 77
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Graphics context

The values of red, green and blue are part of the graphics context, as described in section 4.1.

See also

CLEAR_COLOR_A, CLEAR

4.26 CLEAR_STENCIL

Specify clear value for the stencil buffer

Encoding

31 24 23 8 7 0

0x11 reserved s

Parameters

s

 Value used when the stencil buffer is cleared. The initial value is 0

Graphics context

The value of s is part of the graphics context, as described in section 4.1.

See also

CLEAR

4.27 CLEAR_TAG

Specify clear value for the tag buffer

Encoding

31 24 23 8 7 0

0x12 reserved t

Parameters

t
Value used when the tag buffer is cleared. The initial value is 0.

Graphics context

The value of s is part of the graphics context, as described in section 4.1.

See also

TAG, TAG_MASK, CLEAR

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 78
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.28 COLOR_A

Set the current color alpha

Encoding

31 24 23 8 7 0

0x10 reserved alpha

Parameters

alpha
Alpha for the current color. The initial value is 255

Description

Sets the alpha value applied to drawn elements – points, lines, and bitmaps. How the alpha value
affects image pixels depends on BLEND_FUNC; the default behavior is a transparent blend.

Examples

Drawing three characters with transparency 255, 128, and 64:

Graphics context

The value of alpha is part of the graphics context, as described in section 4.1.

See also

COLOR_RGB, BLEND_FUNC

4.29 COLOR_MASK

Enable or disable writing of color components

Encoding

31 24 23 4 3 2 1 0

0x20 reserved r g b a

Parameters

r
Enable or disable the red channel update of the color buffer. The initial value is 1 and

means enable.

g
Enable or disable the green channel update of the color buffer. The initial value is 1 and
means enable.

dl(BEGIN(BITMAPS));

dl(VERTEX2II(50, 30, 31, 0x47));

dl(COLOR_A(128));

dl(VERTEX2II(58, 38, 31, 0x47));

dl(COLOR_A(64));

dl(VERTEX2II(66, 46, 31, 0x47));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 79
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

b
Enable or disable the blue channel update of the color buffer. The initial value is 1 and
means enable.

 a
Enable or disable the alpha channel update of the color buffer. The initial value is 1 and
means enable.

Description

The color mask controls whether the color values of a pixel are updated. Sometimes it is used to
selectively update only the red, green, blue or alpha channels of the image. More often, it is used to
completely disable color updates while updating the tag and stencil buffers.

Examples

Draw an ‘8’ digit in the middle of the screen. Then paint an invisible 40-pixel circular touch area into

the tag buffer:

Graphics context

The values of r, g, b and a are part of the graphics context, as described in section 4.1.

See also

TAG_MASK

4.30 COLOR_RGB

Set the current color red, green and blue.

Encoding

31 24 23 16 15 8 7 0

0x04 red blue green

Parameters

red
Red value for the current color. The initial value is 255

green
Green value for the current color. The initial value is 255

blue
Blue value for the current color. The initial value is 255

Description

Sets the red, green and blue values of the color buffer which will be applied to the following draw
operation.

dl(BEGIN(BITMAPS));

dl(VERTEX2II(68, 40, 31, 0x38));

dl(POINT_SIZE(40 * 16));

dl(COLOR_MASK(0, 0, 0, 0));

dl(BEGIN(POINTS));

dl(TAG(0x38));

dl(VERTEX2II(80, 60, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 80
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

Drawing three characters with different colors:

Graphics context

The values of red, green and blue are part of the graphics context, as described in section 4.1.

See also

COLOR_A

4.31 DISPLAY

End the display list. All the commands following this command will be ignored.

Encoding

31 24 23 0

0x0 reserved

Parameters

None

Graphics context

None

See also

None

4.32 END

End drawing a graphics primitive.

Encoding

31 24 23 0

0x21 reserved

Parameters

None

Description

It is recommended to have an END for each BEGIN. However, advanced users may avoid the usage
of END in order to save space for extra graphics instructions in RAM_DL.

dl(BEGIN(BITMAPS));

dl(VERTEX2II(50, 38, 31, 0x47));

dl(COLOR_RGB(255, 100, 50));

dl(VERTEX2II(80, 38, 31, 0x47));

dl(COLOR_RGB(50, 100, 255));

dl(VERTEX2II(110, 38, 31, 0x47));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 81
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Graphics context

None

See also

BEGIN

4.33 JUMP

Execute commands at another location in the display list

Encoding

31 24 23 16 15 0

0x1E reserved dest

Parameters

dest
Display list number to be jumped. The valid range is from 0 to 2047(sizeof(RAM_DL)/4-1).

Graphics context

None

See also

CALL

4.34 LINE_WIDTH

Specify the width of lines to be drawn with primitive LINES in 1/16 pixel precision.

Encoding

31 24 23 12 11 0

0x0E reserved width

Parameters

width
Line width in 1/16 pixel precision. The initial value is 16.

Description

Sets the width of drawn lines. The width is the distance from the center of the line to the outermost
drawn pixel, in units of 1/16 pixel. The valid range is from 1 to 4095. i.e., from 1 to 255 pixels.

Please note the LINE_WIDTH command will affect the LINES, LINE_STRIP, RECTS,
EDGE_STRIP_A/B/R/L primitives.

Note: The lines are drawn with the requested width, but below around 6 the pixels get very dark
and hard to see. Half pixel lines (width 8) are totally usable.

Examples
The second line is drawn with a width of 80, for a 5-pixel radius:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 82
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Graphics context

The value of width is part of the graphics context, as described in section 4.1.

See also

None

4.35 MACRO

Execute a single command from a macro register.

Encoding

31 24 23 1 0

0x25 reserved m

Parameters

m
Macro registers to read. Value 0 means the content in REG_MACRO_0 is to be fetched

and inserted in place. Value 1 means REG_MACRO_1 is to be fetched and inserted in
place. The content of REG_MACRO_0 or REG_MACRO_1 shall be a valid display list
command, otherwise the behavior is undefined.

Graphics context

None

See also

None

4.36 NOP

No operation.

Encoding

31 24 23 0

0x2D reserved

Parameters

None

Description

Does nothing. May be used as a spacer in display lists, if required.

dl(BEGIN(LINES));

dl(VERTEX2F(16 * 10, 16 * 30));

dl(VERTEX2F(16 * 150, 16 * 40));

dl(LINE_WIDTH(80));

dl(VERTEX2F(16 * 10, 16 * 80));

dl(VERTEX2F(16 * 150, 16 * 90));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 83
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Graphics context

None

See also

None

4.37 PALETTE_SOURCE

Specify the base address of the palette.

Encoding

31 24 23 22 21 0

0x2A reserved addr

Parameters

addr
Address of palette in RAM_G, 2-byte alignment is required if pixel format is
PALETTED4444 or PALETTED565. The initial value is RAM_G.

Description

Specify the base address in RAM_G for palette

Graphics context

The value of addr is part of the graphics context

See also

None

4.38 POINT_SIZE

Specify the radius of points

Encoding

31 24 23 13 12 0

0x0D reserved size

Parameters

size
Point radius in 1/16 pixel precision. The initial value is 16. The valid range is from zero to
8191, i.e., from 0 to 511 pixels.

Description

Sets the size of drawn points. The width is the distance from the center of the point to the outermost
drawn pixel, in units of 1/16 pixels.

Examples

The second point is drawn with a width of 160, for a 10 pixel radius:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 84
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Graphics context

The value of size is part of the graphics context, as described in section 4.1.

See also

None

4.39 RESTORE_CONTEXT

Restore the current graphics context from the context stack.

Encoding

31 24 23 0

0x23 reserved

Parameters

None

Description

Restores the current graphics context, as described in section 4.1. Four levels of SAVE and
RESTORE stacks are available. Any extra RESTORE_CONTEXT will load the default values into the
present context.

Examples

Saving and restoring context means that the second ‘G’ is drawn in red, instead of blue:

Graphics context

None

See also

SAVE_CONTEXT

dl(BEGIN(BITMAPS));

dl(COLOR_RGB(255, 0, 0));

dl(SAVE_CONTEXT());

dl(COLOR_RGB(50, 100, 255));

dl(VERTEX2II(80, 38, 31, 0x47));

dl(RESTORE_CONTEXT());

dl(VERTEX2II(110, 38, 31, 0x47));

dl(BEGIN(POINTS));

dl(VERTEX2II(40, 30, 0, 0));

dl(POINT_SIZE(160));

dl(VERTEX2II(120, 90, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 85
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.40 RETURN

Return from a previous CALL command.

Encoding

31 24 23 0

0x24 reserved

Parameters

None

Description

CALL and RETURN have 4 levels of stack in addition to the current pointer. Any additional
CALL/RETURN done will lead to unexpected behavior.

Graphics context

None

See also

CALL

4.41 SAVE_CONTEXT

Push the current graphics context on the context stack

Encoding

31 24 23 0

0x22 reserved

Parameters

None

Description

Saves the current graphics context, as described in section 4.1. Any extra SAVE_CONTEXT will
throw away the earliest saved context.

Examples

Saving and restoring context means that the second ‘G’ is drawn in red, instead of blue:

dl(BEGIN(BITMAPS));

dl(COLOR_RGB(255, 0, 0));

dl(SAVE_CONTEXT());

dl(COLOR_RGB(50, 100, 255));

dl(VERTEX2II(80, 38, 31, 0x47));

dl(RESTORE_CONTEXT());

dl(VERTEX2II(110, 38, 31, 0x47));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 86
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Graphics context

None

See also

RESTORE_CONTEXT

4.42 SCISSOR_SIZE

Specify the size of the scissor clip rectangle.

Encoding

31 24 23 12 11 0

0x1C width height

Parameters

width
The width of the scissor clip rectangle, in pixels. The initial value is 2048.
The value of zero will cause zero output on screen.

The valid range is from zero to 2048.

height
The height of the scissor clip rectangle, in pixels. The initial value is 2048.
The value of zero will cause zero output on screen.
The valid range is from zero to 2048.

Description

Sets the width and height of the scissor clip rectangle, which limits the drawing area.

Examples

Setting a 40 x 30 scissor rectangle clips the clear and bitmap drawing:

Graphics context

The values of width and height are part of the graphics context 4.1.

See also

None

dl(SCISSOR_XY(40, 30));

dl(SCISSOR_SIZE(80, 60));

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(CLEAR(1, 1, 1));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(35, 20, 31, 0x47));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 87
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.43 SCISSOR_XY

Specify the top left corner of the scissor clip rectangle.

Encoding

31 24 23 22 21 11 10 0

 0x1B reserved x y

Parameters

x
The unsigned x coordinate of the scissor clip rectangle, in pixels. The initial value is 0. The
valid range is from zero to 2047.

y
The unsigned y coordinates of the scissor clip rectangle, in pixels. The initial value is 0. The
valid range is from zero to 2047.

Description

Sets the top-left position of the scissor clip rectangle, which limits the drawing area.

Examples

Setting a 40 x 30 scissor rectangle clips the clear and bitmap drawing:

Graphics context

The values of x and y are part of the graphics context 4.1

See also

None

dl(SCISSOR_XY(40, 30));

dl(SCISSOR_SIZE(80, 60));

dl(CLEAR_COLOR_RGB(0, 0, 255));

dl(CLEAR(1, 1, 1));

dl(BEGIN(BITMAPS));

dl(VERTEX2II(35, 20, 31, 0x47));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 88
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.44 STENCIL_FUNC

Set function and reference value for stencil testing.

Encoding

31 24 23 20 19 16 15 8 7 0

0x0A reserved func ref mask

Parameters

func
Specifies the test function, one of NEVER, LESS, LEQUAL, GREATER, GEQUAL, EQUAL,
NOTEQUAL, or ALWAYS. The initial value is ALWAYS.

About the value of these constants, refer to ALPHA_FUNC.

ref
Specifies the reference value for the stencil test. The initial value is 0.

mask
Specifies a mask that is ANDed with the reference value and the stored stencil value. The
initial value is 255

Description

Stencil test rejects or accepts pixels depending on the result of the test function defined in func
parameter, which operates on the current value in the stencil buffer against the reference value.

Examples

Refer to STENCIL_OP.

Graphics context

The values of func, ref and mask are part of the graphics context, as described in section 4.1.

See also

STENCIL_OP, STENCIL_MASK

4.45 STENCIL_MASK

Control the writing of individual bits in the stencil planes

Encoding

31 24 23 8 7 0

0x13 reserved mask

Parameters

mask
The mask used to enable writing stencil bits. The initial value is 255

Graphics context

The value of mask is part of the graphics context, as described in section 4.1.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 89
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

See also

STENCIL_FUNC, STENCIL_OP, TAG_MASK

4.46 STENCIL_OP

Set stencil test actions.

Encoding

31 24 23 6 5 3 2 0

0x0C reserved sfail spass

Parameters

sfail
Specifies the action to take when the stencil test fails, one of KEEP, ZERO, REPLACE, INCR,

DECR, and INVERT. The initial value is KEEP (1)

spass
Specifies the action to take when the stencil test passes, one of the same constants as sfail.
The initial value is KEEP (1)

Name Value Description

ZERO 0 check OpenGL definition

KEEP 1 check OpenGL definition

REPLACE 2 check OpenGL definition

INCR 3 check OpenGL definition

DECR 4 check OpenGL definition

INVERT 5 check OpenGL definition

Table 20 – STENCIL_OP Constants Definition

Description

The stencil operation specifies how the stencil buffer is updated. The operation selected depends on
whether the stencil test passes or not.

Examples

Draw two points, incrementing stencil at each pixel, then draw the pixels with value 2 in red:

Graphics context

The values of sfail and spass are part of the graphics context, as described in section 4.1.

See also

STENCIL_FUNC, STENCIL_MASK

dl(STENCIL_OP(INCR, INCR));

dl(POINT_SIZE(760));

dl(BEGIN(POINTS));

dl(VERTEX2II(50, 60, 0, 0));

dl(VERTEX2II(110, 60, 0, 0));

dl(STENCIL_FUNC(EQUAL, 2, 255));

dl(COLOR_RGB(100, 0, 0));

dl(VERTEX2II(80, 60, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 90
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.47 TAG

Attach the tag value for the following graphics objects drawn on the screen. The initial tag buffer
value is 255.

Encoding

31 24 23 8 7 0

0x03 reserved s

Parameters

s
Tag value. Valid value range is from 1 to 255.

Description

The initial value of the tag buffer is specified by command CLEAR_TAG and takes effect by issuing

command CLEAR. The TAG command can specify the value of the tag buffer that applies to the
graphics objects when they are drawn on the screen. This TAG value will be assigned to all the
following objects, unless the TAG_MASK command is used to disable it. Once the following graphics
objects are drawn, they are attached with the tag value successfully. When the graphics objects
attached with the tag value are touched, the register REG_TOUCH_TAG will be updated with the
tag value of the graphics object being touched.

If there are no TAG commands in one display list, all the graphics objects rendered by the display
list will report the tag value as 255 in REG_TOUCH_TAG when they are touched.

Graphics context

The value of s is part of the graphics context, as described in section 4.1.

See also

CLEAR_TAG, TAG_MASK

4.48 TAG_MASK

Control the writing of the tag buffer

Encoding

31 24 23 1 0

0x14 reserved mask

Parameters

mask
Allow updates to the tag buffer. The initial value is one and it means the tag buffer is updated
with the value given by the TAG command. Therefore, the following graphics objects will be
attached to the tag value given by the TAG command.
The value zero means the tag buffer is set as the default value, rather than the value given

by TAG command in the display list.

Description

Every graphics object drawn on screen is attached with the tag value which is defined in the tag
buffer. The tag buffer can be updated by the TAG command.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 91
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The default value of the tag buffer is determined by CLEAR_TAG and CLEAR commands. If there
is no CLEAR_TAG command present in the display list, the default value in tag buffer shall be 0.

TAG_MASK command decides whether the tag buffer takes the value from the default value of the
tag buffer or the TAG command of the display list.

Graphics context

The value of mask is part of the graphics context, as described in section 4.1.

See also

TAG, CLEAR_TAG, STENCIL_MASK, COLOR_MASK

4.49 VERTEX2F

Start the operation of graphics primitives at the specified screen coordinate, in the pixel precision
defined by VERTEX_FORMAT.

Encoding

31 30 29 15 14 0

0x1 x y

Parameters

x
Signed x-coordinate in units of pixel precision defined in command VERTEX_FORMAT, which
by default is 1/16 pixel precision.

y
Signed y-coordinate in units of pixel precision defined in command VERTEX_FORMAT, which
by default is 1/16 pixel precision.

Description

The pixel precision depends on the value of VERTEX_FORMAT. The maximum range of coordinates

depends on pixel precision and is described in the VERTEX_FORMAT instruction.

Graphics context

None

See also

VERTEX_FORMAT

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 92
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.50 VERTEX2II

Start the operation of graphics primitive at the specified coordinates in pixel precision.

Encoding

31 30 29 21 20 12 11 7 6 0

0x2 x y handle cell

Parameters

x
X-coordinate in pixels, unsigned integer ranging from 0 to 511.

y
Y-coordinate in pixels, unsigned integer ranging from 0 to 511.

handle
Bitmap handle. The valid range is from 0 to 31.

cell
Cell number. Cell number is the index of the bitmap with same bitmap layout and format. For
example, for handle 31, the cell 65 means the character “A” in built in font 31.

Note: The handle and cell parameters are ignored unless the graphics primitive is specified as bitmap
by command BEGIN(BITMAPS), prior to this command.

Description

To draw the graphics primitives beyond the coordinate range [(0,0), (511, 511)], use VERTEX2F

instead.

Graphics context

None

See also

BITMAP_HANDLE, CELL, VERTEX2F

4.51 VERTEX_FORMAT

Set the precision of VERTEX2F coordinates.

Encoding

31 24 23 3 2 0

0x27 reserved frac

Parameters

frac
Number of fractional bits in X, Y coordinates. Valid range is from 0 to 4. The initial value is 4.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 93
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Description

VERTEX2F uses 15 bit signed numbers for its (X,Y) coordinate. This command controls the
interpretation of these numbers by specifying the number of fractional bits.

By varying the format, an application can trade range against precision.

Frac
value

Unit of pixel precision VERTEX2F
range

0 1 𝑝𝑖𝑥𝑒𝑙 -16384 to 16383

1 ½ 𝑝𝑖𝑥𝑒𝑙 -8192 to 8191

2 ¼ 𝑝𝑖𝑥𝑒𝑙 -4096 to 4095

3 1/8 𝑝𝑖𝑥𝑒𝑙 -2048 to 2047

4 1/16 𝑝𝑖𝑥𝑒𝑙 -1024 to 1023

Table 21 – VERTEX_FORMAT and Pixel Precision

Graphics context

The value of frac is part of the graphics context

See also

VERTEX2F, VERTEX_TRANSLATE_X, VERTEX_TRANSLATE_Y

4.52 VERTEX_TRANSLATE_X

Specify the vertex transformations X translation component.

Encoding

31 24 23 17 16 0

0x2B reserved x

Parameters

x
Signed x-coordinate in 1/16 pixel. The initial value is 0.

Description

Specifies the offset added to vertex X coordinates. This command allows drawing
to be shifted on the screen. It applies to both VERTEX2F and VERTEX2II commands.

Graphics context

The value of x is part of the graphics context

See also

NONE

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 94
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.53 VERTEX_TRANSLATE_Y

Specify the vertex transformation’s Y translation component.

Encoding

31 24 23 17 16 0

0x2C reserved y

Parameters

y
Signed y-coordinate in 1/16 pixel. The initial value is 0

Description

Specifies the offset added to vertex Y coordinates. This command allows drawing

to be shifted on the screen. It applies to both VERTEX2F and VERTEX2II commands.

Graphics context

The value of y is part of the graphics context

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 95
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5 Coprocessor Engine

5.1 Command FIFO

The coprocessor engine is fed via a 4K byte FIFO called RAM_CMD. The MCU writes coprocessor
commands or display list commands into the FIFO, and the coprocessor engine reads and executes
the commands. The MCU updates the register REG_CMD_WRITE to indicate that there are new
commands in the FIFO, and the coprocessor engine updates REG_CMD_READ after the commands
have been executed. Therefore, when REG_CMD_WRITE is equal to REG_CMD_READ, it indicates
the FIFO is empty and all the commands are executed without error.

To compute the free space, the MCU can apply the following formula:

 fullness = (REG_CMD_WRITE – REG_CMD_READ) mod 4096

 free space = (4096 – 4) –fullness;

This calculation does not report 4096 bytes of free space, to prevent completely wrapping the circular
buffer and making it appear empty.

If enough space is available in the FIFO, the MCU writes the commands at the appropriate location
in the FIFO, and then updates REG_CMD_WRITE. To simplify the MCU code, EVE automatically
wraps continuous writes from the top address (RAM_CMD + 4095) back to the bottom address
(RAM_CMD + 0) if the starting address of a write transfer is within RAM_CMD.

FIFO entries are always 4 bytes wide – it is an error for either REG_CMD_READ or

REG_CMD_WRITE to have a value that is not a multiple of 4 bytes. Each command issued to the
coprocessor engine may take 1 or more words: the length depends on the command itself, and any
appended data. Some commands are followed by variable-length data, so the command size may
not be a multiple of 4 bytes. In this case the coprocessor engine ignores the extra 1, 2 or 3 bytes
and continues reading the next command at the following 4-byte boundary.

To offload work from the MCU for checking the free space in the circular buffer, EVE offers a pair of

registers REG_CMDB_SPACE and REG_CMDB_WRITE. It enables the MCU to write commands
and data to the coprocessor in a bulk transfer, without computing the free space in the circular buffer
and increasing the address. As long as the amount of data to be transferred is less than the value
in the register REG_CMDB_SPACE, the MCU is able to safely write all the data to
REG_CMDB_WRITE in one write transfer. All writes to REG_CMDB_WRITE are appended to the
command FIFO and may be of any length that is a multiple of 4 bytes. To determine the free space
of FIFO, reading REG_CMDB_SPACE and checking if it is equal to 4092 is easier and faster than

comparing REG_CMD_WRITE and REG_CMD_READ.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 96
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.2 Widgets

The Coprocessor engine provides pre-defined widgets for users to construct screen designs easily.
The picture below illustrates the commands to render widgets and effects.

Figure 3 – Widget List

5.2.1 Common Physical Dimensions

This section contains the common physical dimensions of the widgets, unless it is specified in the
widget introduction.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 97
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

• All rounded corners have a radius that is computed from the font used for the widget
(curvature of lowercase ‘o’ character).

 Radius = font height * 3 / 16

• All 3D shadows are drawn with:

(1) Highlight offsets 0.5 pixels above and left of the object
(2) Shadow offsets 1.0 pixel below and right of the object.

• For widgets such as progress bar, scrollbar and slider, the output will be a vertical widget
in the case where width and height parameters are of same value.

5.2.2 Color Settings

Coprocessor engine widgets are drawn with the color designated by the precedent commands:

CMD_FGCOLOR, CMD_BGCOLOR and COLOR_RGB. The coprocessor engine will determine to
render the different areas of the widgets in different colors according to these commands.

Usually, CMD_FGCOLOR affects the interaction area of coprocessor engine widgets if they are
designed for interactive UI elements, for example, CMD_BUTTON, CMD_DIAL. CMD_BGCOLOR
applies the background color of widgets with the color specified. Please see the table below for more
details.

Widget CMD_FGCOLOR CMD_BGCOLOR COLOR_RGB

CMD_TEXT NO NO YES

CMD_BUTTON YES NO YES(label)

CMD_GAUGE NO YES YES(needle and mark)

CMD_KEYS YES NO YES(text)

CMD_PROGRESS NO YES YES

CMD_SCROLLBAR YES(Inner bar) YES(Outer bar) NO

CMD_SLIDER YES(Knob) YES(Right bar of

knob)

YES(Left bar of knob)

CMD_DIAL YES(Knob) NO YES(Marker)

CMD_TOGGLE YES(Knob) YES(Bar) YES(Text)

CMD_NUMBER NO NO YES

CMD_CALIBRATE YES(Animating dot) YES(Outer dot) NO

CMD_SPINNER NO NO YES

Table 22 – Widgets Color Setup Table

5.2.3 Caveat

The behavior of widgets is not defined if the parameter values are out of the valid range.

5.3 Interaction with RAM_DL

If the coprocessor command is to generate respective display list commands, the coprocessor engine
will write them to RAM_DL. The current write location in RAM_DL is held in the register

REG_CMD_DL. Whenever the coprocessor engine writes a word to the display list, it increments
the register REG_CMD_DL. The special command CMD_DLSTART sets REG_CMD_DL to zero, for
the start of a new display list.

All display list commands can also be written to command FIFO. The coprocessor engine has the
intelligence to differentiate and copy them into the current display list location specified by
REG_CMD_DL. For example, the following code snippet writes a small display list:

cmd(CMD_DLSTART); // start a new display list

cmd(CLEAR_COLOR_RGB(255, 100, 100)); // set clear color

cmd(CLEAR(1, 1, 1)); // clear screen

//……

cmd(DISPLAY()); // display

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 98
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Of course, this display list could have been written directly to RAM_DL. The advantage of this
technique is that you can mix low-level operations and high-level coprocessor engine commands in
a single stream:

5.3.1 Synchronization between MCU & Coprocessor Engine

At some points, it is necessary to wait until the coprocessor engine has processed all outstanding

commands. When the coprocessor engine completes the last outstanding command in the command
buffer, it raises the INT_CMDEMPTY interrupt. Another approach to detecting synchronization is
that the MCU can poll REG_CMD_READ until it is equal to REG_CMD_WRITE.

One situation that requires synchronization is to read the value of REG_CMD_DL, when the MCU
needs to do direct writes into the display list. In this situation the MCU should wait until the
coprocessor engine is idle before reading REG_CMD_DL.

5.4 ROM and RAM Fonts

Fonts in EVE are treated as a set of bitmap-graphics with metrics block indexed by handles from 0
to 31. The following commands are using fonts:

• CMD_BUTTON
• CMD_KEYS
• CMD_TOGGLE
• CMD_TEXT

• CMD_NUMBER

For any EVE series Ics prior to BT81X Series, only ASCII characters are possible to be displayed
by the commands above. There is one font metrics block associated with each font, which is called
“legacy font metrics block” below. With it, up to 128 characters for each font are ready to be used.
In BT81X Series, extended font metrics block is introduced to support a full range of Unicode

characters with UTF-8 coding points (note: the CMD_KEYS command does not support Unicode
characters).

5.4.1 Legacy Font Metrics Block

For each font, there is one 148-bytes font metrics block associated with it.

The format of the 148-bytes font metrics block is as below:

Address Size Value Description

p + 0 128 Width width of each font character, in pixels

p + 128 4 Format bitmap format as defined in
BITMAP_EXT_FORMAT, except
TEXTVGA,TEXT8X8, BARGRAPH and
PALETTED formats.

P + 132 4 line stride font bitmap line stride, in bytes

p + 136 4 pixel width font screen width, in pixels

p + 140 4 pixel height font screen height, in pixels

p + 144 4 Gptr pointer to glyph data in memory

Table 23 – Legacy Font Metrics Block

cmd(CMD_DLSTART); // start a new display list

cmd(CLEAR_COLOR_RGB(255, 100, 100)); // set clear color

cmd(CLEAR(1, 1, 1)); // clear screen

cmd_button(20, 20, // x, y

 60, 60, // width, height in pixels

 30, // font 30

 0, // default options

 "OK!"); // Label of button

cmd(DISPLAY()); // Mark the end of display list

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 99
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

For ROM fonts, these blocks are located in built-in ROM, in an array of length 19. The address of
this array is held in ROM location ROM_FONTROOT.

For custom fonts, these blocks shall be located in RAM_G.

5.4.2 Example to find the width of character

To find the width of character ‘g’ (ASCII 0x67) in ROM font 34:

read 32-bit pointer p from ROM_FONTROOT

widths = p + (148 * (34 – 16)) (table starts at font 16)

read byte from memory at widths[0x67]

5.4.3 Extended Font Metrics Block

The extended font metrics block is a new feature introduced in BT81X series, which can handle fonts
with a full range of Unicode code points. It shall reside at RAM_G.

The font block is variable-sized, depending on the number of characters.

Address Size Value Description
p + 0 4 signature Must be 0x0100AAFF
p + 4 4 size Total size of the font block, in bytes
p + 8 4 format Bitmap format, as defined in

BITMAP_EXT_FORMAT, except
TextVGA,Text8x8, BarGraph and Paletted
formats.

P + 12 4 swizzle Bitmap swizzle value, see BITMAP_SWIZZLE
p + 16 4 layout width Font bitmap line stride, in bytes
p + 20 4 layout height Font bitmap height, in pixels
p + 24 4 pixel_width Font screen width, in pixels
p + 28 4 pixel_height Font screen height, in pixels
p + 32 4 start_of_graphic_data Pointer to font graphic data in memory,

including flash.
P + 36 4 number_of_characters, 𝑁 Total number of characters in font, must be

multiple of 128
p + 40 4 x [𝑁/128] gptr Offsets to glyph data
p + 40
+ 4 x [𝑁/128]

4 x [𝑁/128] wptr Offsets to width data

p + 40
+ 8 x [𝑁/128]

 𝑁 width_data Width data, one byte per character

Table 24 – Extended Font Metrics Block

The table gptr contains offsets to graphic data. There is one offset for every
128 code points. The offsets are all relative to the start_of_graphic_data. The start_of_graphic_data
may be an address in RAM_G or flash, specified in the same way as BITMAP_SOURCE. Similarly,
the table wptr contains offsets to width data, but the offsets are relative to p, the start of the font

block itself. So, to find the bitmap address and width

of a code point cp, please refer to the pseudo-code below:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 100
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

struct xfont {

 uint32_t signature,

 uint32_t size,

 uint32_t format,

 uint32_t swizzle,

 uint32_t layout_width,

 uint32_t layout_height,

 uint32_t pixel_width,

 uint32_t pixel_height,

 uint32_t start_of_graphic_data;

 uint32_t number_of_characters;

 uint32_t gptr[𝑁/128];

 uint32_t wptr[𝑁/128];
 uint8_t width_data[𝑁];
};

uint32_t cp_address(xfont *xf, uint32_t cp)

{

 uint32_t bytes_per_glyph;

 bytes_per_glyph = xf->layout_width * xf->layout_height;

 if (xf->start_of_graphic_data >= 0x800000)

 //if the graphic data is in flash

 return (xf->start_of_graphic_data +

 (xf->gptr[cp / 128] + bytes_per_glyph * (cp % 128)) / 32);

 else

 //if the graphic data is in RAM_G

 return (xf->start_of_graphic_data +

 (xf->gptr[cp / 128] + bytes_per_glyph * (cp % 128)));

}

uint8_t cp_width(xfont *xf, uint32_t cp)

{

 return *(

 (uint8_t*)xf +

 xf->wptr[cp / 128] + (cp % 128));

}

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 101
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Note that the structure above is shown to illustrate the fields of the xfont block clearly. A code
implementation of the above structure could use the following defines. The defines help to ensure
that the structure can be compiled without errors due to the variable sizes of the last three entries
in the structure.

5.4.4 ROM Fonts (Built-in Fonts)

In total, there are 19 ROM fonts numbered from 16 to 34.

By default, ROM fonts 16 to 31 are attached to bitmap handles 16 to 31 and users may use these
fonts by specifying bitmap handle from 16 to 31.

To use ROM font 32 to 34, the user needs to call CMD_ROMFONT to assign the bitmap handle with
the ROM font number. Refer to CMD_ROMFONT for more details. To reset ROM fonts to default
bitmap handle, use CMD_RESETFONTS.

For ROM fonts 16 to 34 (except 17 and 19), each font includes 95 printable ASCII characters from
0x20 to 0x7E inclusive. All these characters are indexed by its corresponding ASCII value. For ROM

fonts 17 and 19, each font includes 127 printable ASCII characters from 0x80 to 0xFF, inclusive.
All these characters are indexed using value from 0x0 to 0x7F, i.e., code 0 maps to ASCII character
0x80 and code 0x7F maps to ASCII character 0xFF. Users are required to handle this mapping
manually.
The picture below shows the ROM font effects:

#define XF_GPTR(xf) ((unsigned int*)&(((int*)xf)[10]))

#define XF_WPTR(xf) ((unsigned int*)&(((char*)xf)[40 + 4 * \

 (xf->number_of_characters / 128)]))

#define XF_WIDTH(xf) ((unsigned char*)&(((char*)xf)[0]))

typedef struct

{

 uint32_t signature;// Must be 0x0100AAFF

 uint32_t size; // Total size of the font block, in bytes

 uint32_t format; // Bitmap format

 uint32_t swizzle; // Bitmap swizzle value

 uint32_t layout_width; // Font bitmap line stride, in bytes

 uint32_t layout_height;// Font bitmap height, in pixels

 uint32_t pixel_width; // Font screen width, in pixels

 uint32_t pixel_height; // Font screen height, in pixels

 uint32_t start_of_graphic_data;// Pointer to font graphic data

 uint32_t number_of_characters; // Total number of characters in font: N (multiple of 128)

} XFONT_EXTENDED;

uint32_t cp_address(const XFONT_EXTENDED * xf, uint32_t cp)
{

 uint32_t bytes_per_glyph;

 bytes_per_glyph = xf->layout_width * xf->layout_height;

 if (xf->start_of_graphic_data >= 0x800000)

 //if the graphic data is in flash

 return (xf->start_of_graphic_data +

 (XF_GPTR(xf)[cp / 128] + bytes_per_glyph * (cp % 128)) / 32);

 else

 //if the graphic data is in RAM_G

 return (xf->start_of_graphic_data +

 (XF_GPTR(xf)[cp / 128] + bytes_per_glyph * (cp % 128)));

}

uint8_t cp_width(const XFONT_EXTENDED * xf, uint32_t cp)
{

 uint32_t offset = XF_WPTR(xf)[cp / 128] + (cp % 128);

 return XF_WIDTH(xf)[offset];

}

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 102
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Figure 4 – ROM Font List

5.4.5 Using Custom Font

Users can define custom fonts by following the steps below:

• Select a bitmap handle 0-31

• Load the font bitmap(glyph) into RAM_G or flash memory
• Create or load a font metrics block in RAM_G

Then either:

1. Set up bitmap parameters by using display list command:
o BITMAP_SOURCE,

o BITMAP_LAYOUT/BITMAP_LAYOUT_H,
BITMAP_SIZE/BITMAP_SIZE _H

o BITMAP_EXT_FORMAT if font is based on ASTC format bitmaps

 or:

o using the coprocessor command CMD_SETBITMAP.

2. Use command CMD_SETFONT to register the new font with the handle 0-31

or:

• Use command CMD_SETFONT2 to register the new font with the handle 0-31.

(Recommended method)

After this setup, the font’s handle 0-31 can be used as a font argument of coprocessor commands.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 103
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.5 Animation support

Based on ASTC format of bitmap data, BT81X can play back the animation efficiently with minimum
MCU effort and memory usage. To achieve that, the animation data and object are defined. The
utility has been provided to generate these animation assets.

The animation data consists of a sequence of display list fragments. Each fragment must be 64-byte
aligned, and has a length that is a multiple of 4. The animation object is also 64-byte aligned, and

contains:

• a signature
• a frame count
• an array of references to the display list fragments.

Note that a fragment can appear multiple times in a table, for example for animation that is slower

than the frame rate. Fragments contain regular display list commands. The fragment code is
appended to the display list as follows in order that the fragment can:

1. change graphics state,
2. load and use any bitmaps using the current bitmap handle.

Typically, the bitmap data for a fragment also resides in flash and a typical display list to show the
fragment is as below:

 SAVE_CONTEXT

 BITMAP_HANDLE(scratch_handle)

 <fragment>

 RESTORE_CONTEXT

Animations can run in channels. A channel keeps track of the animation state. There are 32
animation channels. Each channel can handle one animation. The animation commands are:

• CMD_ANIMFRAME - render one frame of an animation
• CMD_ANIMSTART - start an animation
• CMD_ANIMSTOP - stop animation
• CMD_ANIMXY - set the (x; y) coordinates of an animation

• CMD_ANIMDRAW - draw active animations

All animation functions accept a channel number 0-31.Register REG_ANIM_ACTIVE to indicate the

state of animation channels.

In BT815/6, animation objects and data are only limited to be in flash and requires flash in the
fast/full mode when it is running. In BT817/8, animation objects and data are also allowed to be in
RAM_G. Therefore, there are the following commands introduced:

• CMD_ANIMFRAMERAM - render one frame of an animation in RAM_G
• CMD_ANIMSTART RAM - start an animation in RAM_G

In addition, another command CMD_RUNANIM is also introduced in BT817/8 to simplify the
playing back animation.

// A fragment is: a pointer to display list data, and a size

struct fragment {

 uint32_t nbytes; // must be 4-byte aligned

 uint32_t ptr; // must be 64-byte aligned

};

struct animation_header {

 uint32_t signature; // always ANIM_SIGNATURE (0xAAAA0100)

 uint32_t num_frames;

 struct fragment table[num_frames];

};

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 104
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples 1:

Examples 2:

5.6 String Formatting

Some coprocessor commands, such as CMD_TEXT,CMD_BUTTON,CMD_TOGGLE, accept a zero-
terminated string argument. This string may contain UTF-8 characters, if the selected font contains
the appropriate code points.

If the OPT_FORMAT option is given in the command, then the string is interpreted as a printf-style
format string. The supported formatting is a subset of standard C99. The output string may be up

to 256 bytes in length. Arguments to the format string follow the string and its padding. They are
always 32-bit, and aligned to 32-bit boundaries. So, for example the command:

Should be serialized as:

Offset Size
(In Bytes)

Value Remarks

0 4 0xFFFFFF0C CMD_TEXT

4 2 0 X coordinate

6 2 0 Y coordinate

8 2 26 Font handle

10 2 OPT_FORMAT Options

12 1 ‘%’ Format specifier

13 1 ‘d’ Conversion specifier

14 1 0 Padding bytes for 32 bits alignment

15 1 0

16 4 237 Integer

/***

play back an animation once in flash

***/

//set up an channel 1

cmd_animstart(1,4096, ANIM_ONCE);

cmd_animxy(400, 240); //The center of animation

//draw each frame in the animation object in a while loop.

while (0 == rd32 (REG_DLSWAP)) {

 cmd_dlstart();

 cmd_animdraw();

 cmd_swap();

 if (0 == rd32(REG_ANIM_ACTIVE))

 break;

}

cmd_animstop(1);

/***

play back the animation from frame to frame using cmd_animframe.

FRAME_COUNT is the number of frames to be rendered.

***/

for (int i = 0; i < FRAME_COUNT; i++)

{

 cmd_dlstart();

 cmd(CLEAR(1,1,1));

 cmd_animframe(400,240, 4096, i); //draw the ith frame.

 cmd(DISPLAY());

 cmd_swap();

}

cmd_text(0, 0, 26, OPT_FORMAT, "%d", 237);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 105
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The format string is composed of zero or more directives: ordinary characters (not %), which are
copied unchanged to the output stream; and conversion specifications, each of which results in
fetching zero or more subsequent arguments from the input stream. Each conversion specification
is introduced by the character specifier. In between there may be (in this order) zero or more flags,
an optional minimum field width and an optional precision.

5.6.1 The Flag Characters

The character % is followed by zero or more of the following flags:

Flag Description

0

The value should be zero padded. For d, I, u, o, x, and X conversions,
the converted value is padded on the left with zeros rather than

blanks. If the 0 and–- flags both appear, the 0 flag is ignored. For

other conversions, the behavior is undefined.

-
The converted value is to be left adjusted on the field boundary. (The

default is right justification.) The converted value is padded on the
right with blanks, rather than on the left with blanks or zeros

' ' (a space)
A blank should be left before a positive number (or empty string)

produced by a signed conversion

+
A sign (+ or -) should always be placed before a number produced by

a signed conversion. By default, a sign is used only for negative
numbers.

5.6.2 The Field Width

An optional decimal digit string (with nonzero first digit) specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded with spaces on the left

(or right, if the left-adjustment flag has been given). Instead of a decimal digit string one may write
‘*’ to specify that the field width is given in the next argument. A negative field width is taken as a
‘-’ flag followed by a positive field width. In no case does a nonexistent or small field width cause
truncation of a field; if the result of a conversion is wider than the field width, the field is expanded
to contain the conversion result.

5.6.3 The Precision

An optional precision, in the form of a period (‘.’) followed by an optional decimal digit string. Instead
of a decimal digit string one may write ‘*’ to specify that the field width is given in the next argument.
If the precision is given as just ‘.’, the precision is taken to be zero. This gives the minimum number
of digits to appear for d, i, u, o, x, and X conversions, the number of digits to appear after the radix

character for a, A, e, E, f, and F conversions, the maximum number of significant digits for g and G
conversions, or the maximum number of characters to be printed from a string for s and S
conversions.

5.6.4 The Conversion Specifier

A character that specifies the type of conversion to be applied. The conversion specifiers and their
meanings are:

Specifiers Meaning

d,i The integer argument is converted to signed decimal notation. The precision,
if any, gives the minimum number of digits that must appear; if the converted
value requires fewer digits, it is padded on the left with zeros

u, o, x, X The unsigned integer argument is converted to unsigned octal (o), unsigned
decimal (u), or unsigned hexadecimal (x and X) notation. The letters abcdef are

used for x conversions; the letters ABCDEF are used for X conversions. The

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 106
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

precision, if any, gives the minimum number of digits that must appear; if the
converted value requires fewer digits, it is padded on the left with zeros.

c (lower

case)
The integer argument is treated as a Unicode code point, and encoded as UTF-8

s (lower

case)
The argument is expected to be an address of RAM_G storing an array of
characters.
Characters from the array are written up to (but not including) a terminating null
byte; if a precision is specified, no more than the number specified are written. If
a precision is given, no null byte need be present; if the precision is not specified,

or is greater than the size of the array, the array must contain a terminating null
byte.

% A '%' is written. No argument is converted. The complete conversion specification
is '%%'.

Table 25 – String Format Specifier
Examples:

Format string Output Assumption

"%3d%% complete", c 51% complete int c = 51

"base address %06x", a base address 12a000 int a = 0x12a000

"%+5.3umV", mv +1947 mV unsigned int mv = 1947

"Temp %d%.1d degree", t / 10, t % 10 Temp 68.0 degrees int c = 680

"%s %d times", RAM_G + 4, nTimes Hello 5 times "RAM_G+4" is the starting address
of the string
int nTimes = 5

5.7 Coprocessor Faults

Some commands can cause coprocessor faults. These faults arise because the coprocessor cannot
continue. For example:

• An invalid JPEG is supplied to CMD_LOADIMAGE
• An invalid data stream is supplied to CMD_INFLATE/CMD_INFLATE2

• An attempt is made to write more than 2048 instructions into a display list

In the fault condition, the coprocessor:

1. writes a 128-byte diagnostic string to memory starting at RAM_ERR_REPORT.
2. sets REG_CMD_READ to 0xfff (an illegal value because all command buffer data is 32-bit

aligned),

3. raises the INT_CMDEMPTY interrupt
4. stops accepting new commands

The diagnostic string gives details of the problem, and the command that triggered it. The string is
up to 128 bytes long, including the terminating 0x00. It always starts with the text “ERROR”" For
example, after a fault the memory buffer might contain:

45 52 52 4f 52 3a 20 69 6c 6c 65 67 61 6c 20 6f |ERROR: illegal o|

70 74 69 6f 6e 20 69 6e 20 63 6d 64 5f 69 6e 66 |ption in cmd_inf|

6c 61 74 65 32 28 29 00 00 00 00 00 00 00 00 00 |late2().........|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 107
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The possible errors are:

Error string Remarks

display list overflow more than 2048 drawing operations in the display list

illegal font or bitmap handle valid handles are 0-31

out of channel The animation channels are used up

uninitialized font font should be set up with CMD_ROMFONT or CMD_SETFONT2

illegal alignment flash commands only support certain alignments

illegal option a command’s option(parameter) was not recognized

invalid animation the animation object or frame is not valid

invalid animation channel animation channel number is not valid

invalid base a number base was given outside the range 2-36

unsupported JPEG the JPEG image is not supported (e.g., progressive)

invalid size a radius, width, or height was negative or zero

corrupted JPEG the JPEG image data is corrupted

unsupported PNG the PNG image is not supported

corrupted PNG the PNG image data is corrupted

image type not recognized the image is not a PNG or JPG

display list must be empty CMD_CLEARCACHE was called with a non-empty display list

unknown bitmap format CMD_SETBITMAP was called with an unknown bitmap format

corrupted DEFLATE data the DEFLATE data is corrupted

corrupted AVI the AVI data is corrupted

invalid format character an invalid character appeared in a format

invalid format string the format conversion specifier was not found

format buffer overflow the format output buffer used more than 256 bytes

Table 26 – Coprocessor Faults Strings

When the host MCU encounters the fault condition, it can recover as follows:

1. Read REG_COPRO_PATCH_PTR into a local variable “patch_address”.

2. Set REG_CPURESET to 1, to hold the coprocessor engine in the reset condition
3. Set REG_CMD_READ, REG_CMD_WRITE, REG_CMD_DL to zero
4. Set REG_CPURESET to 0, to restart the coprocessor engine
5. Write the variable “patch_address” of step 1 to REG_COPRO_PATCH_PTR.
6. To enable coprocessor access flash content, send commands “CMD_FLASHATTACH” following

“CMD_FLASHFAST”. It will make sure flash enters full-speed mode.
7. Restore REG_PCLK to the original value if the error string is ‘display list must be empty’ because

REG_PCLK is set to zero when that specific error takes place.

5.8 Coprocessor Graphics State

The coprocessor engine maintains a small number of internal states for graphics drawing. This state
is set to the default at coprocessor engine reset, and by CMD_COLDSTART. The state values are
not affected by CMD_DLSTART or CMD_SWAP, so an application need only set them once at
startup.

State Default Commands

background color dark blue (0x002040) CMD_BGCOLOR

foreground color light blue (0x003870) CMD_FGCOLOR

gradient color white (0xFFFFFF) CMD_GRADCOLOR

Spinner None CMD_SPINNER

object trackers all disabled CMD_TRACK

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 108
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

interrupt timer None CMD_INTERRUPT

bitmap transform matrix:

[
𝐴 𝐵 𝐶
𝐷 𝐸 𝐹

]

 [
1.0 0.0 0.0
0.0 1.0 0.0

]

CMD_LOADIDENTITY,
CMD_TRANSLATE,
CMD_SCALE,
CMD_ROTATE,
CMD_ROTATEAROUND

Scratch bitmap handle 15 CMD_SETSCRATCH

Font pointers 0-15 Undefined CMD_SETFONT,
CMD_SETFONT2

Font pointer 16-31 ROM fonts 16-31 CMD_SETFONT,
CMD_SETFONT2,
CMD_ROMFONT

base of number 10 CMD_SETBASE

Media FIFO Address is zero and length is zero CMD_MIDEAFIFO,

Table 27 – Coprocessor Engine Graphics State

5.9 Parameter OPTION

The following table defines the parameter “OPTION” mentioned in this chapter.

Name Value Description Commands
OPT_3D 0 3D effect CMD_BUTTON,

CMD_CLOCK,
CMD_KEYS,
CMD_GAUGE,
CMD_SLIDER,
CMD_DIAL,
CMD_TOGGLE,
CMD_PROGRESS,
CMD_SCROLLBAR

OPT_RGB565 0 Decode the source image to RGB565
format

CMD_LOADIMAGE

OPT_MONO 1 Decode the source JPEG image to L8
format, i.e., monochrome

CMD_LOADIMAGE

OPT_NODL 2 No display list commands generated CMD_LOADIMAGE

OPT_FLAT 256 No 3D effect CMD_BUTTON,
CMD_CLOCK,
CMD_KEYS,
CMD_GAUGE,
CMD_SLIDER,
CMD_DIAL,
CMD_TOGGLE,
CMD_PROGRESS,
CMD_SCROLLBAR

OPT_SIGNED 256 The number is treated as a 32-bit
signed integer

CMD_NUMBER

OPT_CENTERX 512 Horizontally-centered style CMD_KEYS,
CMD_TEXT,
CMD_NUMBER

OPT_CENTERY 1024 Vertically centered style CMD_KEYS,
CMD_TEXT,
CMD_NUMBER

OPT_CENTER 1536 horizontally and vertically centered
style

CMD_KEYS,
CMD_TEXT,
CMD_NUMBER

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 109
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Name Value Description Commands
OPT_RIGHTX 2048 Right justified style CMD_KEYS,

CMD_TEXT,
CMD_NUMBER

OPT_NOBACK 4096 No background drawn CMD_CLOCK,
CMD_GAUGE

OPT_FILL 8192 Breaks the text at spaces into
multiple lines, with maximum width
set by CMD_FILLWIDTH.

CMD_BUTTON,
CMD_TEXT

OPT_FLASH 64 Fetch the data from flash memory CMD_INFLATE2,
CMD_LOADIMAGE,
CMD_PLAYVIDEO,

OPT_FORMAT 4096 Flag of string formatting CMD_TEXT,
CMD_BUTTON,
CMD_TOGGLE

OPT_NOTICKS 8192 No Ticks CMD_CLOCK,
CMD_GAUGE

OPT_NOHM 16384 No hour and minute hands CMD_CLOCK

OPT_NOPOINTER 16384 No pointer CMD_GAUGE

OPT_NOSECS 32768 No second hands CMD_CLOCK

OPT_NOHANDS 49152 No hands CMD_CLOCK

OPT_NOTEAR 4 Synchronize video updates to the
display blanking interval, avoiding
horizontal “tearing” artefacts.

CMD_PLAYVIDEO

OPT_FULLSCREEN 8 Zoom the video so that it fills as
much of the screen
as possible.

CMD_PLAYVIDEO

OPT_MEDIAFIFO 16 source video/image/compressed(zlib)
data from the defined media FIFO

CMD_PLAYVIDEO
CMD_VIDEOFRAME
CMD_LOADIMAGE
CMD_INFLATE2

OPT_OVERLAY 128 Append the video bitmap to an
existing display list

CMD_PLAYVIDEO

OPT_SOUND 32 Decode the audio data CMD_PLAYVIDEO

OPT_DITHER 256 Enable dithering feature in decoding
PNG process

CMD_LOADIMAGE

Table 28 – Parameter OPTION Definition

5.10 Resources Utilization

The coprocessor engine does not change the state of the graphics engine. That is, graphics states
such as color and line width are not to be changed by the coprocessor engine.

However, the widgets do reserve some hardware resources, which the user must take into account:

• Bitmap handle 15 is used by the 3D-effect buttons, keys and gradient, unless it is set to

another bitmap handle using CMD_SETSCRATCH.
• One graphics context is used by objects, and the effective stack depth for SAVE_CONTEXT

and RESTORE_CONTEXT commands is 3 levels.

5.11 Command list

In BT817/8, coprocessor adds a new feature “command list”, which enables user to construct a
series of coprocessor command or display list at RAM_G. There are the following new commands

to facilitate:

• CMD_NEWLIST
• CMD_CALLLIST
• CMD_RETURN
• CMD_ENDLIST

The examples can be found in the sections of the commands above.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 110
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.12 Command Groups

These commands begin and finish the display list:

• CMD_DLSTART–- start a new display list
• CMD_SWAP–- swap the current display list

Commands to draw graphics objects:

• CMD_TEXT–- draw a UTF-8 text string
• CMD_BUTTON–- draw a button with a UTF-8 label.
• CMD_CLOCK–- draw an analog clock
• CMD_BGCOLOR–- set the background color
• CMD_FGCOLOR–- set the foreground color
• CMD_GRADCOLOR – set up the highlight color used in 3D effects for CMD_BUTTON

and CMD_KEYS
• CMD_GAUGE–- draw a gauge
• CMD_GRADIENT–- draw a smooth color gradient
• CMD_KEYS–- draw a row of keys
• CMD_PROGRESS–- draw a progress bar
• CMD_SCROLLBAR–- draw a scroll bar

• CMD_SLIDER–- draw a slider
• CMD_DIAL–- draw a rotary dial control
• CMD_TOGGLE–- draw a toggle switch with UTF-8 labels
• CMD_NUMBER–- draw a decimal number
• CMD_SETBASE–- set the base for number output
• CMD_FILLWIDTH–- set the text fill width

Commands to operate on RAM_G:

• CMD_MEMCRC–- compute a CRC-32 for RAM_G

• CMD_MEMZERO–- write zero to RAM_G
• CMD_MEMSET–- fill RAM_G with a byte value
• CMD_MEMWRITE–- write bytes into RAM_G

• CMD_MEMCPY–- copy a block of RAM_G
• CMD_APPEND–- append more commands to display list

Commands for loading data into RAM_G:

• CMD_INFLATE - decompress data into RAM_G

• CMD_INFLATE2 - decompress data into RAM_G with more options
• CMD_LOADIMAGE–- load a JPEG/PNG image into RAM_G
• CMD_MEDIAFIFO–- set up a streaming media FIFO in RAM_G
• CMD_VIDEOFRAME – load video frame from RAM_G or flash memory.

Commands for setting the bitmap transform matrix:

• CMD_LOADIDENTITY–- set the current matrix to identity
• CMD_TRANSLATE–- apply a translation to the current matrix
• CMD_SCALE–- apply a scale to the current matrix
• CMD_ROTATE–- apply a rotation to the current matrix
• CMD_ROTATEAROUND–- apply a rotation and scale around the specified pixel
• CMD_SETMATRIX–- write the current matrix as a bitmap transform
• CMD_GETMATRIX–- retrieves the current matrix coefficients

Commands for flash operation:

• CMD_FLASHERASE – Erase all of flash
• CMD_FLASHWRITE – Write data to flash
• CMD_FLASHUPDATE – write data to flash, erasing if necessary

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 111
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

• CMD_FLASHDETACH – detach from flash
• CMD_FLASHATTACH – attach to flash
• CMD_FLASHFAST – enter full-speed mode
• CMD_FLASHSPIDESEL –SPI bus: deselect device
• CMD_FLASHTX – SPI bus: write bytes

• CMD_FLASHRX – SPI bus: read bytes
• CMD_CLEARCACHE – clear the flash cache
• CMD_FLASHSOURCE – specify the flash source address for the following coprocessor

commands
• CMD_VIDEOSTARTF – initialize video frame decoder
• CMD_APPENDF – Read data from flash to RAM_DL

Commands for video playback:

• CMD_VIDEOSTART – Initialize the video frame decoder

• CMD_VIDEOSTARTF –Initialize the video frame decoder for video data in flash
• CMD_VIDEOFRAME – Load video frame data
• CMD_PLAYVIDEO–- play back motion-JPEG encoded AVI video

Commands for animation:

• CMD_ANIMFRAME – render one frame of an animation
• CMD_ANIMFRAMERAM – render one frame in RAM_G of an animation
• CMD_ANIMSTART – start an animation
• CMD_ANIMSTOP – stop animation

• CMD_ANIMXY – set the (x,y) coordinates of an animation
• CMD_ANIMDRAW – draw active animation

Other commands:

• CMD_COLDSTART–- set coprocessor engine state to default values

• CMD_INTERRUPT–- trigger interrupt INT_CMDFLAG
• CMD_REGREAD–- read a register value
• CMD_CALIBRATE–- execute the touch screen calibration routine
• CMD_ROMFONT – load a ROM font into bitmap handle
• CMD_SETROTATE–- Rotate the screen and set up transform matrix accordingly
• CMD_SETBITMAP – Set up display list commands for specified bitmap
• CMD_SPINNER–- start an animated spinner

• CMD_STOP–- stop any spinner, screensaver or sketch
• CMD_SCREENSAVER–- start an animated screensaver
• CMD_SKETCH–- start a continuous sketch update
• CMD_SNAPSHOT–- take a snapshot of the current screen
• CMD_SNAPSHOT2–- take a snapshot of part of the current screen with more format

option
• CMD_LOGO–- play device logo animation

5.13 CMD_APILEVEL

This command sets the API level used by the coprocessor.

C prototype

void cmd_apilevel(uint32_t level);

Parameter

 level

API level to use. Level 1 is BT815 compatible, and is the default. Level 2 is BT817/8.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 112
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Command layout

+0 CMD_APILEVEL (0xFFFF FF63)

+4 level

Description

To use the BT817/8 specific commands or other improvement, level 2 has to be sent.

Example

Note: BT817/8 specific command

5.14 CMD_DLSTART

This command starts a new display list. When the coprocessor engine executes this command, it
waits until the current display list is ready for writing, and then sets REG_CMD_DL to zero.

C prototype

void cmd_dlstart();

Command layout

+0 CMD_DLSTART (0xFFFF FF00)

Examples

NA

5.15 CMD_INTERRUPT

This command is used to trigger Interrupt CMDFLAG. When the coprocessor engine executes this
command, it triggers interrupt, which will set the bit field CMDFLAG of REG_INT_FLAGS, unless the
corresponding bit in REG_INT_MASK is zero.

C prototype

void cmd_interrupt(uint32_t ms);

Parameters

ms
The delay before the interrupt triggers, in milliseconds. The interrupt is guaranteed not to fire
before this delay. If ms are zero, the interrupt fires immediately.

Command layout

+0 CMD_INTERRUPT(0xFFFF FF02)

+4 ms

//At startup, the API level is 1. To set it to 2:

cmd_apilevel(2);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 113
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

5.16 CMD_COLDSTART

This command sets the coprocessor engine to default reset states.

C prototype

void cmd_coldstart();

Command layout

+0 CMD_COLDSTART(0xFFFF FF32)

Examples

Change to a custom color scheme, and then restore the default colors:

5.17 CMD_SWAP

This command is used to swap the current display list. When the coprocessor engine executes this
command, it requests a display list swap immediately after the current display list is scanned out.
Internally, the coprocessor engine implements this command by writing to REG_DLSWAP with
0x02.

This coprocessor engine command will not generate any display list command into display list
memory RAM_DL. It is expected to be used with CMD_DLSTART in pair.

C prototype

void cmd_swap();

Command layout

+0 CMD_SWAP(0xFFFF FF01)

Examples

 NA

cmd_fgcolor(0x00c040);

cmd_gradcolor(0x000000);

cmd_button(2, 32, 76, 56, 26,0, "custom");

cmd_coldstart();

cmd_button(82, 32, 76, 56, 26,0, "default");

//To trigger an interrupt after a JPEG has finished loading:

cmd_loadimage();

//...

cmd_interrupt(0); // previous load image complete, trigger interrupt

//To trigger an interrupt in 0.5 seconds:

cmd_interrupt(500);

//...

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 114
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.18 CMD_APPEND

This command appends more commands resident in RAM_G to the current display list memory
address where the offset is specified in REG_CMD_DL.

C prototype

void cmd_append(uint32_t ptr,

 uint32_t num);
Parameters

ptr
Starting address of source commands in RAM_G

num

Number of bytes to copy. This must be a multiple of 4.

Command layout

+0 CMD_APPEND(0xFFFF FF1E)

+4 ptr

+8 num

Description
After appending is done, the coprocessor engine will increase the REG_CMD_DL by num to make

sure the display list is in order.
Examples

5.19 CMD_REGREAD

This command is used to read a register value.

C prototype

void cmd_regread(uint32_t ptr,

uint32_t result);

Parameters

ptr
Address of the register to be read

result
The register value which has been read from the ptr address . OUTPUT parameter.
Write a dummy 32-bit value 0x00000000 for this parameter and the Co-Processor will replace

this value with the result after the command has been executed.
After execution, the host should then read the address of this parameter in RAM_CMD to get
the result value.

Command layout

+0 CMD_REGREAD(0xFFFF FF19)

+4 ptr

+8 result

cmd_dlstart();

cmd_append(0, 40); // copy 10 commands from main memory address 0

cmd(DISPLAY); // finish the display list

cmd_swap();

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 115
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

5.20 CMD_MEMWRITE

This command writes the following bytes into the memory. This command can be used to set register
values, or to update memory contents at specific times.

C prototype

void cmd_memwrite(uint32_t ptr,

 uint32_t num);
Parameters

ptr
The memory address to be written

num
Number of bytes to be written.

Description

The data byte should immediately follow in the command buffer. If the number of bytes is not a

multiple of 4, then 1, 2 or 3 bytes should be appended to ensure 4-byte alignment of the next
command, these padding bytes can have any value. The completion of this function can be detected

when the value of REG_CMD_READ is equal to REG_CMD_WRITE.

Note: If using this command improperly, it may corrupt the memory.

Command layout

+0 CMD_MEMWRITE(0xFFFF FF1A)

+4 ptr

+8 num

+12 …n byte0 … byten

Examples

5.21 CMD_INFLATE

This command is used to decompress the following compressed data into RAM_G. The data should

have been compressed with the DEFLATE algorithm, e.g., with the ZLIB library. This is particularly
useful for loading graphics data.

//To capture the exact time when a command completes:

uint16_t x = rd16(REG_CMD_WRITE);

cmd_regread(REG_CLOCK, 0);

//...

printf("%08x\n", rd32(RAM_CMD + (x + 8) % 4096));

//To change the backlight brightness to 0x64 (half intensity) for a particular screen shot:

//...

cmd_swap(); // finish the display list

cmd_dlstart(); // wait until after the swap

cmd_memwrite(REG_PWM_DUTY, 4); // write to the PWM_DUTY register

cmd(100);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 116
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

C prototype

void cmd_inflate(uint32_t ptr);

Parameters

ptr
Destination address in RAM_G. The data byte should immediately follow in the command
buffer.

Description

If the number of bytes is not a multiple of 4, then 1, 2 or 3 bytes should be appended to ensure 4-
byte alignment of the next command. These padding bytes can have any value

Command layout

+0 CMD_INFLATE(0xFFFF FF22)

+4 ptr

+8 …n byte0 … byten

Examples

To load graphics data to main memory address 0x8000:

 cmd_inflate(0x8000);

 // zlib-compressed data follows

5.22 CMD_INFLATE2

This command is used to decompress the following compressed data into RAM_G. The data may be

supplied in the command buffer, the media FIFO, or from flash memory. The data should have been
compressed with the DEFLATE algorithm, e.g., with the ZLIB library. This is particularly useful for
loading graphics data.

C prototype

void cmd_inflate2(uint32_t ptr,
 uint32_t options);

Parameters

ptr
destination address to put the decompressed data.

options
If option OPT_MEDIAFIFO is given, the compressed data is sourced from the media FIFO. If

option OPT_FLASH is given, then flash memory is the source. When flash is the source, call

CMD_FLASHSOURCE before this command to specify the address. See CMD_FLASHSOURCE.
Otherwise, giving zero value and the compressed data shall be followed immediately.

Description

If the number of bytes is not a multiple of 4, then 1, 2 or 3 bytes should be appended to ensure

4-byte alignment of the next command. These padding bytes can have any value.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 117
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Command layout

+0 CMD_INFLATE2(0xFFFF FF50)

+4 ptr

+8 options

+9….+n byte1…byten

5.23 CMD_LOADIMAGE

This command is used to load a JPEG or PNG image, decompressing the provided JPEG or PNG

image data into a specific EVE bitmap format stored in RAM_G. The image data must adhere to the
subsequent formats:

• Regular baseline JPEG (JFIF)

or
• PNG with bit-depth 8 only and no interlace

C prototype

void cmd_loadimage(uint32_t ptr,

 uint32_t options);
Parameters

ptr
Destination address, within RAM_G

options

For JPEG images, the bitmap is loaded as either an RGB565 or L8 format bitmap. If
OPT_MONO is given, L8 is used. Otherwise, RGB565 is used. OPT_RGB565 and

OPT_MONO is specific to JPEG images only.

For PNG images, the PNG standard specifies various color formats. Each of these formats is
loaded into a bitmap in the following manner:

Color type Format Loaded by CMD_LOADIMAGE

0 Grayscale L8

2 Truecolor RGB565

3 Indexed PALETTED565 or PALETTED4444

4 Grayscale and
alpha

not supported

6 Truecolor and
alpha

ARGB4

Option OPT_FULLSCREEN causes the bitmap to be scaled so that it fills as much of the

screen as possible.

If option OPT_MEDIAFIFO is given, the media FIFO is used for the image data source.

If option OPT_FLASH is given, then the flash memory is the image data source.

If neither option OPT_MEDIAFIFO nor option OPT_FLASH is given, then the image data
shall immediately follow in the command FIFO. When flash is the source, call
CMD_FLASHSOURCE before this command to specify the address. See CMD_FLASHSOURCE.

To minimize the programming effort to render the loaded image, there are a set of display list
commands generated and appended to the current display list, unless OPT_NODL is given.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 118
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Description

The data byte should immediately follow in the command FIFO if OPT_MEDIAFIFO or OPT_FLASH
is NOT set. If the number of bytes is not a multiple of 4, then 1, 2 or 3 bytes should be appended
to ensure 4-byte alignment of the next command. These padding bytes can have any value. The

application on the host processor has to parse the JPEG/PNG header to get the properties of the
JPEG/PNG image. Behavior is unpredictable in cases of non-baseline JPEG images or if the output
data generated is more than the RAM_G size.

Note: If the loading image is in PNG format, the top 42K bytes from address 0xF5800 of

RAM_G will be overwritten as temporary data buffer for decoding process.

Command layout

+0 CMD_LOADIMAGE(0xFFFF FF24)

+4 ptr

+8 options

+12 byte 0

+13 byte 1

… …

+n byte n

Examples

To load a JPEG image at address 0 then draw the bitmap at (10, 20) and (100, 20):

5.24 CMD_MEDIAFIFO

This command is to set up a streaming media FIFO. Allocate the specified area of RAM_G and set it
up as streaming media FIFO, which is used by:

• MJPEG video play-back: CMD_PLAYVIDEO/CMD_VIDEOFRAME

• JPEG/PNG image decoding: CMD_LOADIMAGE
• Compressed data by zlib: CMD_INFLATE2

if the option OPT_MEDIAFIFO is selected.

C prototype

void cmd_mediafifo (uint32_t ptr,
 uint32_t size);

Parameters

ptr
starting address of media FIFO

size
number of bytes of media FIFO

cmd_loadimage(0, 0);

... // JPEG file data follows

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(10, 20, 0, 0)); // draw bitmap at (10,20)

cmd(VERTEX2II(100, 20, 0, 0)); // draw bitmap at (100,20)

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 119
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Command layout

+0 CMD_MEDIAFIFO (0xFFFF FF39)

+4 ptr

+8 size

Examples

To set up a 64-Kbyte FIFO at the top of RAM_G for JPEG streaming and report the initial values of
the read and write pointers:

It prints:

R=0x000F000 W=0x00F000

5.25 CMD_PLAYVIDEO

This command plays back MJPEG-encoded AVI video.

Playback starts immediately, and the command completes when playback ends. The playback may

be paused or terminated by writing to REG_PLAY_CONTROL. The register’s value controls playback
as follows:

▪ -1(0xFF) exit playback
▪ 0 pause playback
▪ 1 play normally

During the command execution, the RGB565 bitmap will be created at starting address of RAM_G,
and is 2 × W × H bytes in size, where W and H are the width and height of the video. If OPT_SOUND

is given then a 32 Kbyte audio buffer follows the bitmap. It means that area of RAM_G will be
overwritten by CMD_PLAYVIDEO.

C prototype

void cmd_playvideo (uint32_t opts);

Parameters

opts: The options of playing video

OPT_FULLSCREEN: zoom the video so that it fills as much of the screen as possible.

OPT_MEDIAFIFO: instead of sourcing the AVI video data from the command buffer, source it
from the media FIFO in RAM_G.

OPT_FLASH:Source video data from flash. When flash is the source, call CMD_FLASHSOURCE

before this command to specify the address. See CMD_FLASHSOURCE.

OPT_NOTEAR: Synchronize video updates to the display blanking interval, avoiding
horizontal tearing artifacts.

OPT_SOUND: Decode the audio data encoded in the data following, if any.

OPT_OVERLAY: Append the video bitmap to an existing display list, instead of starting a new
display list.

cmd_mediafifo(0x100000 - 65536, 65536); //0x100000 is the top of RAM_G

printf("R=%08xW=%08x\n",rd32(REG_MEDIAFIFO_READ),rd32(REG_MEDIAFIFO_WRITE));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 120
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

OPT_NODL: Will not change the current display list. There should already be a display list
rendering the video bitmap.

data
The video data to be played unless opts is assigned with OPT_MEDIAFIFO or OPT_FLASH.

Command layout

+0 CMD_PLAYVIDEO (0xFFFF FF3A)

+4 opts

+8~ +n byte1 … byten

Data following parameter “opts” shall be padded to 4 bytes aligned with zero.

Note: For the audio data encoded into AVI video, three formats are supported:

 4 Bit IMA ADPCM, 8 Bit signed PCM, 8 Bit u-Law

In addition, 16 Bit PCM is partially supported by dropping off less significant 8 bits in each audio
sample.

Examples

To play back an AVI video, full-screen:

5.26 CMD_VIDEOSTART

This command is used to initialize video frame decoder. The video data should be supplied using the
media FIFO. This command processes the video header information from the media FIFO, and
completes when it has consumed it.

C prototype

void cmd_videostart();

Parameters

 None

Command layout

+0 CMD_VIDEOSTART (0xFFFF FF40)

Examples

To load frames of video at address 4:

cmd_playvideo(OPT_FULLSCREEN | OPT_NOTEAR);

//... append AVI data ...

cmd_videostart();

cmd_videoframe(4, 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 121
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.27 CMD_VIDEOFRAME

This command is used to load the next frame of a video. The video data should be supplied in the
media FIFO or flash memory. This command extracts the next frame of video, and completes when
it has consumed it.

C prototype

void cmd_videoframe(uint32_t dst,
 uint32_t ptr);

Parameters

dst
Memory location to load the frame data, this will be located in RAM_G.

ptr
Completion pointer. The command writes the 32-bit word at this
location. It is set to 1 if there is at least one more frame available
in the video. 0 indicates that this is the last frame. The value of ptr shall be within RAM_G.

Command layout

+0 CMD_VIDEOFRAME (0xFFFF FF41)

+4 dst

+8 ptr

Examples

To load frames of video at address 4:

5.28 CMD_MEMCRC

This command computes a CRC-32 for a block of RAM_G memory.

C prototype

void cmd_memcrc(uint32_t ptr, uint32_t num, uint32_t result);

Parameters

ptr
Starting address of the memory block

num
Number of bytes in the source memory block

result
Output parameter; written with the CRC-32 after command execution.

cmd_videostart();

do {

 cmd_videoframe(4, 0);

 //... display frame ...

} while (rd32(0) != 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 122
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Command layout

+0 CMD_MEMCRC(0xFFFF FF18)

+4 ptr

+8 num

+12 result

Examples

To compute the CRC-32 of the first 1K byte of memory, first record the value of REG_CMD_WRITE,
execute the command, wait for completion, then read the 32-bit value at result:

5.29 CMD_MEMZERO

This command is used to write zero to a block of memory.

C prototype

void cmd_memzero(uint32_t ptr, uint32_t num);
Parameters

ptr
Starting address of the memory block

num

Number of bytes in the memory block

Command layout

+0 CMD_MEMZERO(0xFFFF FF1C)

+4 ptr

+8 num

Examples

5.30 CMD_MEMSET

This command is used to fill memory with a byte value

C prototype

void cmd_memset(uint32_t ptr,

 uint32_t value,
 uint32_t num);

Parameters

ptr
Starting address of the memory block

uint16_t x = rd16(REG_CMD_WRITE);

cmd_memcrc(0, 1024, 0);

//wait till the command is complete

printf("CRC result is %08x\n", rd32(RAM_CMD + (x + 12) % 4096));

//To erase the first 1K of main memory:

cmd_memzero(0, 1024);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 123
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

value
Value to be written to memory

num
Number of bytes in the memory block

Command layout

+0 CMD_MEMSET(0xFFFF FF1B)

+4 ptr

+8 value

+12 num

Examples

5.31 CMD_MEMCPY

This command is used to copy a block of memory.

C prototype

void cmd_memcpy(uint32_t dest,
 uint32_t src,
 uint32_t num);

Parameters

dest
address of the destination memory block

src
address of the source memory block

num
number of bytes to copy

Command layout

+0 CMD_MEMCPY(0xFFFF FF1D)

+4 dst

+8 src

+12 num

Examples

5.32 CMD_BUTTON

This command is used to draw a button with a UTF-8 label.

C prototype

void cmd_button(int16_t x,
int16_t y,

//To write 0xff the first 1K of main memory:

cmd_memset(0, 0xff, 1024);

//To copy 1K byte of memory from 0 to 0x8000:

cmd_memcpy(0x8000, 0, 1024);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 124
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

uint16_t w,
uint16_t h,
uint16_t font,
uint16_t options,
const char* s);

Parameters

x
X-coordinate of button top-left, in pixels

y

Y-coordinate of button top-left, in pixels

w
width of button, in pixels

h
height of button, in pixels

font
bitmap handle to specify the font used in the button label. See ROM and RAM Fonts.

options
By default, the button is drawn with a 3D effect and the value is zero. OPT_FLAT removes the
3D effect. The value of OPT_FLAT is 256.

s
Button label. It must be one string terminated with null character, i.e., ''\0'' in C language.
UTF-8 encoded. If OPT_FILL is not given then the string may contain newline (\n) characters,
indicating line breaks. See 5.6 String Formatting.

Description
Refer to Coprocessor engine widgets physical dimensions for more information.
Command layout

+0 CMD_BUTTON(0xFFFF FF0D)

+4 x

+6 y

+8 w

+10 h

+12 font

+14 options

+16 s

+17 …

… …

+n 0

Examples

A 140x100 pixel button with large text:

cmd_button(10, 10, 140, 100, 31, 0, "Press!");

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 125
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Without the 3D look:

Several smaller buttons:

Changing button color

5.33 CMD_CLOCK

This command is used to draw an analog clock.

C prototype

void cmd_clock(int16_t x,

int16_t y,
uint16_t r,

uint16_t options,
uint16_t h,
uint16_t m,
uint16_t s,
uint16_t ms);

Parameters

x
x-coordinate of clock center, in pixels

y
y-coordinate of clock center, in pixels

r
the radius of clock, in pixels

cmd_fgcolor(0xb9b900),

cmd_button(10, 10, 50, 25, 26, 0, "Banana");

cmd_fgcolor(0xb97300),

cmd_button(10, 40, 50, 25, 26, 0, "Orange");

cmd_fgcolor(0xb90007),

cmd_button(10, 70, 50, 25, 26, 0, "Cherry");

cmd_button(10, 10, 140, 100, 31, OPT_FLAT, "Press!");

cmd_button(10, 10, 50, 25, 26, 0, "One");

cmd_button(10, 40, 50, 25, 26, 0, "Two");

cmd_button(10, 70, 50, 25, 26, 0, "Three");

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 126
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

options
By default the clock dial is drawn with a 3D effect and the name of this option is OPT_3D. Option
OPT_FLAT removes the 3D effect.
With option OPT_NOBACK, the background is not drawn.
With option OPT_NOTICKS, the twelve-hour ticks are not drawn.

With option OPT_NOSECS, the seconds hand is not drawn.
With option OPT_NOHANDS, no hands are drawn.
With option OPT_NOHM, no hour and minutes hands are drawn.

h
hours

m
minutes

s
seconds

ms
milliseconds

Description

The details of the physical dimensions are:

• The 12 tick marks are placed on a circle of radius r*(200/256).
• Each tick is a point of radius r*(10/256)
• The seconds hand has length r*(200/256) and width r*(3/256)
• The minutes hand has length r*(150/256) and width r*(9/256)
• The hours hand has length r*(100/256) and width r*(12/256)

Refer to Coprocessor engine widgets physical dimensions for more information.

Command layout

+0 CMD_CLOCK(0xFFFF FF14)

+4 x

+6 y

+8 r

+10 options

+12 h

+14 m

+16 s

+18 ms

Examples

A clock with radius 50 pixels, showing a time of 8.15:

Setting the background color

cmd_clock(80, 60, 50, 0, 8, 15, 0, 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 127
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Without the 3D look:

The time fields can have large values. Here the hours are (7 x 3600s) and minutes are (38 x 60s),

and seconds is 59. Creating a clock face showing the time as 7.38.59:

No seconds hand:

No Background:

No ticks:

cmd_bgcolor(0x401010);

cmd_clock(80, 60, 50, 0, 8, 15, 0, 0);

cmd_clock(80, 60, 50, 0,0, 0, (7 * 3600) + (38 * 60) + 59, 0);

cmd_clock(80, 60, 50, OPT_NOBACK, 8, 15, 0, 0);

cmd_clock(80, 60, 50, OPT_FLAT, 8, 15, 0, 0);

cmd_clock(80, 60, 50, OPT_NOTICKS, 8, 15, 0, 0);

cmd_clock(80, 60, 50, OPT_NOSECS, 8, 15, 0, 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 128
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

No hands:

5.34 CMD_FGCOLOR

This command is used to set the foreground color.

C prototype

void cmd_fgcolor(uint32_t c);

Parameters

c
New foreground color, as a 24-bit RGB number.
Red is the most significant 8 bits, blue is the least. So 0xff0000 is bright red.
Foreground color is applicable for things that the user can move such as handles and buttons.

Command layout

+0 CMD_FGCOLOR(0xFFFF FF0A)

+4 c

Examples

 The top scrollbar uses the default foreground color, the others with a changed color:

5.35 CMD_BGCOLOR

This command is used to set the background color

C prototype

void cmd_bgcolor(uint32_t c);

Parameters

c
New background color, as a 24-bit RGB number.
Red is the most significant 8 bits, blue is the least. So 0xff0000 is bright red.

cmd_scrollbar(20, 30, 120, 8, 0, 10, 40, 100);

cmd_fgcolor(0x703800);

cmd_scrollbar(20, 60, 120, 8, 0, 30, 40, 100);

cmd_fgcolor(0x387000);

cmd_scrollbar(20, 90, 120, 8, 0, 50, 40, 100);

cmd_clock(80, 60, 50, OPT_NOHANDS, 8, 15, 0, 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 129
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Background color is applicable for things that the user cannot move E.g., behind gauges and
sliders etc.

Command layout

+0 CMD_BGCOLOR(0xFFFF FF09)

+4 c

Examples

The top scrollbar uses the default background color, the others with a changed color:

5.36 CMD_GRADCOLOR

This command is used to set the 3D Button Highlight Color

C prototype

void cmd_gradcolor(uint32_t c);

Parameters

c

New highlight gradient color, as a 24-bit RGB number.
White is the default value, i.e., 0xFFFFFF.
Red is the most significant 8 bits, blue is the least. So 0xFF0000 is bright red.
Gradient is supported only for Button and Keys widgets.

Command layout

+0 CMD_GRADCOLOR(0xFFFF FF34)

+4 c

Examples

Changing the gradient color: white, red, green and blue:

The gradient color is also used for keys:

cmd_fgcolor(0x101010);

cmd_button(2, 2, 76, 56, 31, 0, "W");

cmd_gradcolor(0xff0000);

cmd_button(82, 2, 76, 56, 31, 0, "R");

cmd_gradcolor(0x00ff00);

cmd_button(2, 62, 76, 56, 31, 0, "G");

cmd_gradcolor(0x0000ff);

cmd_button(82, 62, 76, 56, 31, 0, "B");

cmd_scrollbar(20, 30, 120, 8, 0, 10, 40, 100);

cmd_bgcolor(0x402000);

cmd_scrollbar(20, 60, 120, 8, 0, 30, 40, 100);

cmd_bgcolor(0x202020);

cmd_scrollbar(20, 90, 120, 8, 0, 50, 40, 100);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 130
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.37 CMD_GAUGE

This command is used to draw a Gauge.

C prototype

void cmd_gauge(int16_t x,

int16_t y,
uint16_t r,
uint16_t options,

uint16_t major,
uint16_t minor,
uint16_t val,
uint16_t range);

Parameters

x
X-coordinate of gauge center, in pixels

y
Y-coordinate of gauge center, in pixels

r
Radius of the gauge, in pixels

options
By default, the gauge dial is drawn with a 3D effect and the value of options is zero. OPT_FLAT
removes the 3D effect. With option OPT_NOBACK, the background is not drawn. With option
OPT_NOTICKS, the tick marks are not drawn. With option OPT_NOPOINTER, the pointer is not

drawn.
major
Number of major subdivisions on the dial, 1-10

minor
Number of minor subdivisions on the dial, 1-10

val

Gauge indicated value, between 0 and range, inclusive

range
Maximum value

Description

The details of physical dimension are:

• The tick marks are placed on a 270-degree arc, clockwise starting at south-west position
• Minor ticks are lines of width r*(2/256), major r*(6/256)
• Ticks are drawn at a distance of r*(190/256) to r*(200/256)

cmd_fgcolor(0x101010);

cmd_keys(10, 10, 140, 30, 26, 0, "abcde");

cmd_gradcolor(0xff0000);

cmd_keys(10, 50, 140, 30, 26, 0, "fghij");

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 131
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

• The pointer is drawn with lines of width r*(4/256), to a point r*(190/256)from the
center

• The other ends of the lines are each positioned 90 degrees perpendicular to the pointer
direction, at a distance r*(3/256) from the center

Refer to Coprocessor engine widgets physical dimensions for more information.

Command layout

+0 CMD_GAUGE(0xFFFF FF13)

+4 x

+6 y

+8 r

+10 options

+12 major

+14 minor

+16 value

+18 range

Examples

A gauge with radius 50 pixels, five divisions of four ticks each, indicates 30%:

Without the 3D look:

Ten major divisions with two minor divisions each:

Setting the minor divisions to 1 makes them disappear:

cmd_gauge(80, 60, 50, 0, 10, 1, 30, 100);

cmd_gauge(80, 60, 50, 0, 10, 2, 30, 100);

cmd_gauge(80, 60, 50, OPT_FLAT, 5, 4, 30, 100);

cmd_gauge(80, 60, 50, 0, 5, 4, 30, 100);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 132
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Setting the major divisions to 1 gives minor division only:

A smaller gauge with a brown background:

Scale 0-1000, indicating 1000:

Scaled 0-65535, indicating 49152:

No background:

No tick marks:

cmd_gauge(80, 60, 50, OPT_NOTICKS, 4, 4, 49152, 65535);

cmd_gauge(80, 60, 50, OPT_NOBACK, 4, 4, 49152, 65535);

cmd_gauge(80, 60, 50, 0, 5, 2, 1000, 1000);

cmd_bgcolor(0x402000);

cmd_gauge(80, 60, 25, 0, 5, 4, 30, 100);

cmd_gauge(80, 60, 50, 0, 1, 10, 30, 100);

cmd_gauge(80, 60, 50, 0, 4, 4, 49152, 65535);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 133
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

No pointer:

Drawing the gauge in two passes, with bright red for the pointer:

Add a custom graphic to the gauge by drawing its background, a bitmap, and then its foreground:

5.38 CMD_GRADIENT

This command is used to draw a smooth color gradient.

C prototype

void cmd_gradient(int16_t x0,

int16_t y0,
uint32_t rgb0,

int16_t x1,
int16_t y1,
uint32_t rgb1);

Parameters

x0

x-coordinate of point 0, in pixels

y0
y-coordinate of point 0, in pixels

rgb0
Color of point 0, as a 24-bit RGB number. Red is the most significant 8 bits, Blue is the least.

So 0xff0000 is bright red.

x1
x-coordinate of point 1, in pixels

y1
y-coordinate of point 1, in pixels

cmd_gauge(80, 60, 50, OPT_NOPOINTER, 4, 4, 49152, 65535);

GAUGE_0 = OPT_NOPOINTER;

GAUGE_1 = OPT_NOBACK | OPT_NOTICKS;

cmd_gauge(80, 60, 50, GAUGE_0, 4, 4, 49152, 65535);

cmd(COLOR_RGB(255, 0, 0));

cmd_gauge(80, 60, 50, GAUGE_1, 4, 4, 49152, 65535);

GAUGE_0 = OPT_NOPOINTER | OPT_NOTICKS;

GAUGE_1 = OPT_NOBACK;

cmd_gauge(80, 60, 50, GAUGE_0, 4, 4, 49152, 65535);

cmd(COLOR_RGB(130, 130, 130));

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(80 - 32, 60 -32, 0, 0));

cmd(COLOR_RGB(255, 255, 255));

cmd_gauge(80, 60, 50, GAUGE_1, 4, 4, 49152, 65535);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 134
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

rgb1
Color of point 1, same definition as rgb0.

Description

All the color step values are calculated based on smooth curve interpolated from the RGB0 to RGB1
parameter. The smooth curve equation is independently calculated for all three colors and the
equation used is R0 + t ∗ (R1– − R0), where it is interpolated between 0 and 1. Gradient must be

used with Scissor function to get the intended gradient display.

Command layout

+0 CMD_GRAGIENT(0xFFFF FF0B)

+4 x0

+6 y0

+8 rgb0

+12 x1

+14 y1

+16 rgb1

Examples

A horizontal gradient from blue to red

A vertical gradient

The same colors in a diagonal gradient

Using a scissor rectangle to draw a gradient stripe as a background for a title:

cmd(SCISSOR_XY(20, 40));

cmd(SCISSOR_SIZE(120, 32));

cmd_gradient(20, 0, 0x606060, 140, 0, 0x404080);

cmd_text(23, 40, 29, 0, "Heading 1");

cmd_gradient(0, 0, 0x0000ff, 160, 0, 0xff0000);

cmd_gradient(0, 0, 0x808080, 160, 120, 0x80ff40);

cmd_gradient(0, 0, 0x808080, 0, 120, 0x80ff40);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 135
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.39 CMD_GRADIENTA

This command is used to draw a smooth color gradient with transparency. The two points have RGB
color values, and alpha values which specify their opacity in the range 0x00 to 0xff.

C prototype

void cmd_gradienta(int16_t x0,

int16_t y0,
uint32_t argb0,
int16_t x1,
int16_t y1,
uint32_t argb1);

Parameters

x0
x-coordinate of point 0, in pixels

y0
y-coordinate of point 0, in pixels

argb0
color of point 0, as a 32-bit ARGB number. A is the most significant 8 bits, B is the least. So
0x80ff0000 is 50% transparent bright red, and 0xff0000ff is solid blue.

x1
x-coordinate of point 1, in pixels

y1
y-coordinate of point 1, in pixels

argb1
color of point 1

Description

All the color step values are calculated based on smooth curve interpolated from the RGB0 to RGB1
parameter. The smooth curve equation is independently calculated for all three colors and the
equation used is R0 + t ∗ (R1– − R0), where it is interpolated between 0 and 1. Gradient must be

used with scissor function to get the intended gradient display.

Command layout

+0 CMD_GRADIENTA(0xFFFF FF57)

+4 x0

+6 y0

+8 argb0

+12 x1

+14 y1

+16 argb1

Examples

A solid green gradient, transparent on the right:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 136
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

A vertical gradient from transparent red to solid blue:

5.40 CMD_KEYS

This command is used to draw a row of keys.

C prototype

void cmd_keys(int16_t x,

 int16_t y,
uint16_t w,
uint16_t h,
uint16_t font,
uint16_t options,

const char* s);
Parameters

x
x-coordinate of keys top-left, in pixels

y
y-coordinate of keys top-left, in pixels

font
Bitmap handle to specify the font used in key label. The valid range is from 0 to 31

options
By default the keys are drawn with a 3D effect and the value of option is zero. OPT_FLAT
removes the 3D effect. If OPT_CENTER is given the keys are drawn at minimum size centered

within the w x h rectangle. Otherwise, the keys are expanded so that they completely fill the
available space. If an ASCII code is specified, that key is drawn‘'pressed’'–- i.e., in background

color with any 3D effect removed.

w
The width of the keys

h
The height of the keys

s
key labels, one character per key. The TAG value is set to the ASCII value of each key, so that
key presses can be detected using the REG_TOUCH_TAG register.

cmd_text(80, 60, 30, OPT_CENTER, "background");

cmd_gradienta(0,0,0xff00ff00,160,0,0x0000ff00);

cmd_text(80, 30, 30, OPT_CENTER, "background");

cmd_text(80, 60, 30, OPT_CENTER, "background");

cmd_text(80, 90, 30, OPT_CENTER, "background");

cmd_gradienta(0,20,0x40ff0000,0,100,0xff0000ff);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 137
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Description

The details of physical dimension are:

• The gap between keys is 3 pixels

• For OPT_CENTERX case, the keys are (font width + 1.5) pixels wide, otherwise keys
are sized to fill available width

Refer to Coprocessor engine widgets physical dimensions for more information.

Command layout

+0 CMD_KEYS(0xFFFF FF0E)

+4 x

+6 y

+8 w

+10 h

+12 font

+14 options

+16 s

… …

+n 0

Examples

A row of keys:

Without the 3D look:

Default vs. centered:

cmd_keys(10, 10, 140, 30, 26, 0, "12345");

cmd_keys(10, 60, 140, 30, 26, OPT_CENTER, "12345");

cmd_keys(10, 10, 140, 30, 26, OPT_FLAT, "12345");

cmd_keys(10, 10, 140, 30, 26, 0, "12345");

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 138
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Setting the options to show‘'’' key pressed ‘'’' is ASCII code 0x32):

A calculator-style keyboard using font 29:

A compact keyboard drawn in font 20:

Showing the f (ASCII 0x66) key pressed:

cmd_keys(22, 1, 116, 28, 29, 0, "789");

cmd_keys(22, 31, 116, 28, 29, 0, "456");

cmd_keys(22, 61, 116, 28, 29, 0, "123");

cmd_keys(22, 91, 116, 28, 29, 0, "0.");

cmd_keys(2, 2, 156, 21, 20, OPT_CENTER, "qwertyuiop");

cmd_keys(2, 26, 156, 21, 20, OPT_CENTER, "asdfghijkl");

cmd_keys(2, 50, 156, 21, 20, OPT_CENTER, "zxcvbnm");

cmd_button(2, 74, 156, 21, 20, 0, "");

k = 0x66;

cmd_keys(2, 2, 156, 21, 20, k | OPT_CENTER, "qwertyuiop");

cmd_keys(2, 26, 156, 21, 20, k | OPT_CENTER, "asdfghijkl");

cmd_keys(2, 50, 156, 21, 20, k | OPT_CENTER, "zxcvbnm");

Cmd_button(2, 74, 156, 21, 20, 0, "");

cmd_keys(10, 10, 140, 30, 26, 0x32, "12345");

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 139
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.41 CMD_PROGRESS

This command is used to draw a progress bar.

C prototype

void cmd_progress(int16_t x,

int16_t y,

uint16_t w,
uint16_t h,
uint16_t options,
uint16_t val,
uint16_t range);

Parameters

x
x-coordinate of progress bar top-left, in pixels

y
y-coordinate of progress bar top-left, in pixels

w
width of progress bar, in pixels

h
height of progress bar, in pixels

options
By default, the progress bar is drawn with a 3D effect and the value of options is zero. Options
OPT_FLAT remove the 3D effect and its value is 256

val
Displayed value of progress bar, between 0 and range inclusive

range
Maximum value

Description

The details of physical dimensions are:

• x,y,w,h gives outer dimensions of progress bar. Radius of barI) is min(w,h)/2
• Radius of inner progress line is r*(7/8)

Refer to Coprocessor engine widgets physical dimensions for more information.

Command layout

+0 CMD_PROGRESS(0xFFFF FF0F)

+4 X

+6 Y

+8 W

+10 h

+12 options

+14 val

+16 range

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 140
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

A progress bar showing 50% completion:

Without the 3D look:

A 4-pixel high bar, range 0-65535, with a brown background:

5.42 CMD_SCROLLBAR

This command is used to draw a scroll bar.

C prototype

void cmd_scrollbar(int16_t x,

int16_t y,
uint16_t w,

uint16_t h,
uint16_t options,
uint16_t val,
uint16_t size,
uint16_t range);

Parameters

x
x-coordinate of scroll bar top-left, in pixels

y
y-coordinate of scroll bar top-left, in pixels

w

Width of scroll bar, in pixels. If width is greater than height, the scroll bar is drawn horizontally

h
Height of scroll bar, in pixels. If height is greater than width, the scroll bar is drawn vertically

cmd_bgcolor(0x402000);

cmd_progress(20, 50, 120, 4, 0, 9000, 65535);

cmd_progress(20, 50, 120, 12, OPT_FLAT, 50, 100);

cmd_progress(20, 50, 120, 12, 0, 50, 100);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 141
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

options
By default, the scroll bar is drawn with a 3D effect and the value of options is zero. Options
OPT_FLAT remove the 3D effect and its value is 256

val

Displayed value of scroll bar, between 0 and range inclusive

range
Maximum value

Description

Refer to CMD_PROGRESS for more information on physical dimension.

Command layout

+0 CMD_SCROLLBAR(0xFFFF FF11)

+4 x

+6 y

+8 w

+10 h

+12 options

+14 val

+16 size

+18 range

Examples

A scroll bar indicating 10-50%:

Without the 3D look:

A brown-themed vertical scroll bar:

cmd_bgcolor(0x402000);

cmd_fgcolor(0x703800);

cmd_scrollbar(140, 10, 8, 100, 0, 10, 40, 100);

cmd_scrollbar(20, 50, 120, 8, 0, 10, 40, 100);

cmd_scrollbar(20, 50, 120, 8, OPT_FLAT, 10, 40, 100);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 142
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.43 CMD_SLIDER

This command is to draw a slider.

C prototype

void cmd_slider(int16_t x,

int16_t y,

uint16_t w,
uint16_t h,
uint16_t options,
uint16_t val,
uint16_t range);

Parameters

x
x-coordinate of slider top-left, in pixels

y
y-coordinate of slider top-left, in pixels

w
width of slider, in pixels. If width is greater than height, the scroll bar is drawn horizontally

h
height of slider, in pixels. If height is greater than width, the scroll bar is drawn vertically

options
By default, the slider is drawn with a 3D effect. OPT_FLAT removes the 3D effect

val
Displayed value of slider, between 0 and range inclusive

range

Maximum value

Description

Refer to CMD_PROGRESS for more information on physical dimension.

Command layout

+0 CMD_SLIDER(0xFFFF FF10)

+4 x

+6 y

+8 w

+10 h

+12 options

+14 val

+16 range

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 143
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

A slider set to 50%:

Without the 3D look:

A brown-themed vertical slider with range 0-65535:

5.44 CMD_DIAL

This command is used to draw a rotary dial control.

C prototype

void cmd_dial(int16_t x,
 int16_t y,
 uint16_t r,
 uint16_t options,
 uint16_t val);

Parameters

x
x-coordinate of dial center, in pixels

y
y-coordinate of dial center, in pixels

r

radius of dial, in pixels.

options
By default, the dial is drawn with a 3D effect and the value of options is zero. Options OPT_FLAT
remove the 3D effect and its value is 256

val
Specify the position of dial points by setting value between 0 and 65535 inclusive. 0 means that
the dial points straight down, 0x4000 left, 0x8000 up, and0xc000 right.

cmd_bgcolor(0x402000);

cmd_fgcolor(0x703800);

cmd_slider(76, 10, 8, 100, 0, 20000, 65535);

cmd_slider(20, 50, 120, 8, OPT_FLAT, 50, 100);

cmd_slider(20, 50, 120, 8, 0, 50, 100);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 144
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Description

The details of physical dimension are

• The marker is a line of width r*(12/256), drawn at a distance r*(140/256)to

r*(210/256) from the center

Refer to Coprocessor engine widgets physical dimensions for more information.

Command layout

+0 CMD_DIAL(0xFFFF FF2D)

+4 x

+6 y

+8 r

+10 options

+12 val

Examples

A dial set to 50%:

Without the 3D look:

Dials set to 0%, 33% and 66%:

cmd_dial(80, 60, 55, 0, 0x8000);

cmd_dial(80, 60, 55, OPT_FLAT, 0x8000);

cmd_dial(28, 60, 24, 0, 0x0000);

cmd_text(28, 100, 26, OPT_CENTER, “0%”);

cmd_dial(80, 60, 24, 0, 0x5555);

cmd_text(80, 100, 26, OPT_CENTER, “33%”);

cmd_dial(132, 60, 24, 0, 0xaaaa);

cmd_text(132, 100, 26, OPT_CENTER, “66%”);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 145
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.45 CMD_TOGGLE

This command is used to draw a toggle switch with UTF-8 labels.

C prototype

void cmd_toggle(int16_t x,

int16_t y,
uint16_t w,

uint16_t font,
uint16_t options,
uint16_t state,
const char* s);

Parameters

x

x-coordinate of top-left of toggle, in pixel

y
y-coordinate of top-left of toggle, in pixels

w

width of toggle, in pixels

font
Font to use for text, 0-31. See ROM and RAM Fonts

options
By default, the toggle is drawn with a 3D effect and the value of options is zero. Options

OPT_FLAT remove the 3D effect and its value is 256

state
State of the toggle: 0 is off, 65535 is on.

s
string labels for toggle, UTF-8 encoding. A character value of 255 (in C it can be written as

'\xff') separates the label strings. See 5.6 String Formatting.

Description

The details of physical dimension are:

• Widget height (h) is font height * (20/16) pixel.
• Outer bar radius (r) is font height * (10/16) pixel.
• Knob radius is (r-1.5) pixel, where r is the outer bar radius above.
• The center of outer bar's left round head is at (x, y + r/2) coordinate.

Refer to Coprocessor engine widgets physical dimensions for more information.

Command layout

+0 CMD_TOGGLE(0xFFFF FF12)

+4 x

+6 y

+8 w

+10 font

+12 options

+14 state

+16 s

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 146
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

Using a medium font, in the two states:

Without the 3D look:

With different background and foreground colors:

5.46 CMD_FILLWIDTH

This command sets the pixel fill width for CMD_TEXT,CMD_BUTTON,CMD_BUTTON with the
OPT_FILL option.

C prototype

void cmd_fillwidth(uint32_t s);

Parameters

s

line fill width, in pixels

Command layout

+0 CMD_FILLWIDTH(0xFFFF FF58)

+4 s

Examples

Long text split into lines of no more than 160 pixels:

cmd_toggle(60, 20, 33, 27, 0, 0, “no” “ \xff” “yes”);

cmd_toggle(60, 60, 33, 27, 0, 65535, “no” “\xff" “yes”);

cmd_bgcolor(0x402000);

cmd_fgcolor(0x703800);

cmd_toggle(60, 20, 33, 27, 0, 0, “no” “\xff” “yes”);

cmd_toggle(60, 60, 33, 27, 0, 65535, “no” “\xff” “yes”);

cmd_toggle(60, 20, 33, 27, OPT_FLAT, 0, “no” “\xff” “yes”);

cmd_toggle(60, 60, 33, 27, OPT_FLAT, 65535, “no” “\xff” “yes”);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 147
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.47 CMD_TEXT

This command is used to draw a UTF-8 Text string.

C prototype

void cmd_text(int16_t x,

 int16_t y,

uint16_t font,
uint16_t options,
const char* s);

Parameters

x

x-coordinate of text base, in pixels

y
y-coordinate of text base, in pixels

font

Font to use for text, 0-31. See ROM and RAM Fonts

options
By default (x,y) is the top-left pixel of the text and the value of options is zero.
OPT_CENTERX centers the text horizontally, OPT_CENTERY centers it vertically.
OPT_CENTER centers the text in both directions.
OPT_RIGHTX right-justifies the text, so that the x is the rightmost pixel.

OPT_FORMAT processes the text as a format string, see String formatting.
OPT_FILL breaks the text at spaces into multiple lines, with maximum width set by
CMD_FILLWiDTH.

s
Text string, UTF-8 encoding. If OPT_FILL is not given then the string may contain newline (\n)
characters, indicating line breaks. See 5.6 String Formatting

Command layout

+0 CMD_TEXT(0xFFFF FF0C)

+4 x

+6 y

+8 font

+10 options

+12 s

.. ..

.. 0 (null character to terminate string)

Examples
Plain text at (0,0) in the largest font:

cmd_fillwidth(160);

cmd_text(0, 0, 30, OPT_FILL,"This text doesn’t fit on one

line");

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 148
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Using a smaller font:

Centered horizontally:

Right-justified:

Centered vertically:

Centered both horizontally and vertically:

cmd_text(80, 60, 31, OPT_CENTER, “Text!”);

cmd_text(80, 60, 31, OPT_CENTERY, “Text!”);

cmd_text(80, 60, 31, OPT_CENTERX, “Text!”);

cmd_text(80, 60, 31, OPT_RIGHTX, “Text!”);

cmd_text(0, 0, 31, 0, “Text!”);

cmd_text(0, 0, 26, 0, “Text!”);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 149
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Text with explicit newline:

Text split into lines and centered:

5.48 CMD_SETBASE

This command is used to set the base for number output.

C prototype

void cmd_setbase(uint32_t b);

Parameters

b
Numeric base, valid values are from 2 to 36:
2 for binary,
8 for octal,
10 for decimal,

16 for hexadecimal

Description

Set up numeric base for CMD_NUMBER

Command layout

+0 CMD_SETBASE(0xFFFF FF38)

+4 b

Examples

The number 123456 displayed in decimal, hexadecimal and binary:

cmd_text(80, 60, 29, OPT_CENTER,"one two\nthree four");

cmd_fillwidth(80);

cmd_text(80, 60, 29, OPT_FILL | OPT_CENTER,"one two three

four");

cmd_number(80, 30, 28, OPT_CENTER, 123456);

cmd_setbase(16);

cmd_number(80, 60, 28, OPT_CENTER, 123456);

cmd_setbase(2);

cmd_number(80, 90, 26, OPT_CENTER, 123456);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 150
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.49 CMD_NUMBER

This command is used to draw a number.

C prototype

void cmd_number(int16_t x,

int16_t y,

uint16_t font,
uint16_t options,
int32_t n);

Parameters

x

x-coordinate of text base, in pixels

y
y-coordinate of text base, in pixels

font

 font to use for text, 0-31. See ROM and RAM Fonts

options
By default (x,y) is the top-left pixel of the text.
OPT_CENTERX centers the text horizontally,
OPT_CENTERY centers it vertically.
OPT_CENTER centers the text in both directions.

OPT_RIGHTX right-justifies the text, so that the x is the rightmost pixel.

By default, the number is displayed with no leading zeroes, but if a width 1-9 is specified in the

options, then the number is padded if necessary, with leading zeroes so that it has the given
width. If OPT_SIGNED is given, the number is treated as signed, and prefixed by a minus sign
if negative.

n
The number to display, is either unsigned or signed 32-bit, in the base specified in the
preceding CMD_SETBASE. If no CMD_SETBASE appears before CMD_NUMBER, it will be in
decimal base.

Command layout

+0 CMD_NUMBER(0xFFFF FF2E)

+4 x

+6 y

+8 font

+10 options

+12 n

Examples

A number:

cmd_number(20, 60, 31, 0, 42);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 151
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Centered:

Signed output of positive and negative numbers:

Forcing width to 3 digits, right-justified

5.50 CMD_NOP

This command is a placeholder command and does nothing.
C prototype

void cmd_nop();

Command layout

+0 CMD_NOP(0xFFFF FF53)

5.51 CMD_LOADIDENTITY

This command instructs the coprocessor engine to set the current matrix to the identity matrix, so
that the coprocessor engine is able to form the new matrix as requested by CMD_SCALE,

CMD_ROTATE,CMD_TRANSLATE command.

For more information on the identity matrix, refer to the Bitmap Transformation Matrix section.

C prototype

void cmd_loadidentity();

Command layout

+0 CMD_LOADIDENTITY(0xFFFF FF26)

cmd_number(150, 20, 31, OPT_RIGHTX | 3, 42);

cmd_number(150, 60, 31, OPT_SIGNED | OPT_RIGHTX | 3, -1);

cmd_number(20, 20, 31, OPT_SIGNED, 42);

cmd_number(20, 60, 31, OPT_SIGNED, -42);

cmd_number(80, 60, 31, OPT_CENTER, 42);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 152
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.52 CMD_SETMATRIX

The coprocessor engine assigns the value of the current matrix to the bitmap transform matrix of
the graphics engine by generating display list commands, i.e., BITMAP_TRANSFORM_A-F. After this
command, the following bitmap rendering operation will be affected by the new transform matrix.

C prototype

void cmd_setmatrix();

Command layout

+0 CMD_SETMATRIX(0xFFFF FF2A)

5.53 CMD_GETMATRIX

This command retrieves the current matrix within the context of the coprocessor engine. Note the
matrix within the context of the coprocessor engine will not apply to the bitmap transformation until
it is passed to the graphics engine through CMD_SETMATRIX.

C prototype

void cmd_getmatrix(int32_t a,

 int32_t b,
 int32_t c,
 int32_t d,
 int32_t e,
 int32_t f);

Parameters

a
output parameter; written with matrix coefficient a. See the parameter of the command
BITMAP_TRANSFORM_A for formatting.

b

output parameter; written with matrix coefficient b. See the parameter b of the command
BITMAP_TRANSFORM_B for formatting.

c
output parameter; written with matrix coefficient c. See the parameter c of the command
BITMAP_TRANSFORM_C for formatting.

d
output parameter; written with matrix coefficient d. See the parameter d of the command
BITMAP_TRANSFORM_D for formatting.

e
output parameter; written with matrix coefficient e. See the parameter e of the command

BITMAP_TRANSFORM_E for formatting.

f
output parameter; written with matrix coefficient f. See the parameter f of the command
BITMAP_TRANSFORM_F for formatting.

Command layout

+0 CMD_GETMATRIX(0xFFFF FF33)

+4 a

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 153
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

+8 b

+12 c

+16 d

+20 e

+24 f

5.54 CMD_GETPTR

This command returns the first unallocated memory location.

At API level 1, the allocation pointer is advanced by the following commands:

• cmd_inflate
• cmd_inflate2

At API level 2, the allocation pointer is also advanced by:

• cmd_loadimage
• cmd_playvideo
• cmd_videoframe
• cmd_endlist

C prototype

void cmd_getptr(uint32_t result);

Parameters

result
The first unallocated memory location.

Command layout

+0 CMD_GETPTR (0xFFFF FF23)

+4 result

Examples

cmd_inflate(1000); //Decompress the data into RAM_G + 1000

...... //Following the zlib compressed data

While(rd16(REG_CMD_WRITE) != rd16(REG_CMD_READ)); //Wait till the compression was done

uint16_t x = rd16(REG_CMD_WRITE);

uint32_t ending_address = 0;

cmd_getptr(0);

ending_address = rd32(RAM_CMD + (x + 4) % 4096);

5.55 CMD_GETPROPS

This command returns the source address and size of the bitmap loaded by the previous CMD_

LOADIMAGE.

C prototype

void cmd_getprops(uint32_t ptr, uint32_t width, uint32_t height);

Parameters

ptr
Source address of bitmap.

Note:
At API Level 2 this parameter returns the source address of the decoded image data

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 154
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

in RAM_G
At API level 1, this parameter has different meaning based on the input image format of
CMD_LOADIMAGE: For JPEG, it is the source address of the decoded image data in RAM_G.
For PNG, it is the first unused address in RAM_G after decoding process.

It is an output parameter.

width
The width of the image which was decoded by the last CMD_LOADIMAGE before this
command.

It is an output parameter.

height
The height of the image which was decoded by the last CMD_LOADIMAGE before this

command.

It is an output parameter

Command layout

+0 CMD_GETPROPS (0xFFFF FF25)

+4 wtr

+8 width

+12 height

Description

This command is used to retrieve the properties of the image which is decoded by
CMD_LOADIMAGE. Respective image properties are updated by the coprocessor after this
command is executed successfully.

Examples

Please refer to the CMD_GETPTR.

5.56 CMD_SCALE

This command is used to apply a scale to the current matrix.

C prototype

void cmd_scale(int32_t sx,

int32_t sy);

Parameters

sx
x scale factor, in signed 16. 16-bit fixed-point Form.

sy
y scale factor, in signed 16. 16-bit fixed-point form.

Command layout

+0 CMD_SCALE(0xFFFF FF28)

+4 sx

+8 sy

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 155
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

To zoom a bitmap 2X:

To zoom a bitmap 2X around its center:

5.57 CMD_ROTATE

This command is used to apply a rotation to the current matrix.

C prototype

void cmd_rotate(uint32_t a);

Parameters

a
Clockwise rotation angle, in units of 1/65536 of a circle

Command layout

+0 CMD_ROTATE(0xFFFF FF29)

+4 a

Examples

To rotate the bitmap clockwise by 10 degrees with respect to the top left of the bitmap:

To rotate the bitmap counter clockwise by 33 degrees around the top left of the bitmap:

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_translate(65536 * 32, 65536 * 32);

cmd_scale(2 * 65536, 2 * 65536);

cmd_translate(65536 * -32, 65536 * -32);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_scale(2 * 65536, 2 * 65536);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_rotate(10 * 65536 / 360);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 156
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Rotating a 64 x 64 bitmap around its center:

5.58 CMD_ROTATEAROUND

This command is used to apply a rotation and scale around a specified coordinate.

C prototype

void cmd_rotatearound(int32_t x,
 int32_t y,
 uint32_t a,
 int32_t s);

Parameters

x
center of rotation/scaling, x-coordinate

y
center of rotation/scaling, x-coordinate

a
clockwise rotation angle, in units of 1/65536 of a circle

s
scale factor, in signed 16.16-bit fixed-point form

Command layout

+0 CMD_ROTATEAROUND(0xFFFF FF51)

+4 x

+8 y

+12 a

+16 s

Examples

Rotating a 64 x 64 bitmap around its center:

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_translate(65536 * 32, 65536 * 32);

cmd_rotate(90 * 65536 / 360);

cmd_translate(65536 * -32, 65536 * -32);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_rotate(-33 * 65536 / 360);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 157
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

To halve the bitmap size, again around the center:

A combined 11-degree rotation and shrink by 0.75

5.59 CMD_TRANSLATE

This command is used to apply a translation to the current matrix.

C prototype

void cmd_translate(int32_t tx,

 int32_t ty);

Parameters

tx
x translate factor, in signed 16.16-bit fixed-point Form.

ty
y translate factor, in signed 16.16-bit fixed-point form.

Command layout

+0 CMD_TRANSLATE(0xFFFF FF27)

+4 tx

+8 ty

Examples

To translate the bitmap 20 pixels to the right:

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_rotatearound(32,32, 180 * 65536 /360, 65536 *1);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_rotatearound(32, 32, 0, 0.5 * 65536);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_rotatearound(32, 32,11*65536/360,0.75 * 65536);

cmd_setmatrix();

cmd(VERTEX2II(68,28,0,0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 158
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

To translate the bitmap 20 pixels to the left:

5.60 CMD_CALIBRATE

This command is used to execute the touch screen calibration routine. The calibration procedure
collects three touches from the touch screen, then computes and loads an appropriate matrix into

REG_TOUCH_TRANSFORM_A-F. To use the function, create a display list and include
CMD_CALIBRATE. The coprocessor engine overlays the touch targets on the current display list,
gathers the calibration input and updates REG_TOUCH_TRANSFORM_A-F. There is no need to
add the DISPLAY command and swap the frame by software because coprocessor engine will do it
once this command is received.

Please note that this command only applies to RTE and compatibility mode of CTSE.

C prototype

void cmd_calibrate(uint32_t result);

Parameters

result
output parameter; written with 0 on failure of calibration.

Description

The completion of this function is detected when the value of REG_CMD_READ is equal to

REG_CMD_WRITE.

Command layout

+0 CMD_CALIBRATE(0xFFFF FF15)

+4 result

Examples

cmd_dlstart();

cmd(CLEAR(1,1,1));

cmd_text(80, 30, 27, OPT_CENTER, "Please tap on the dot");

cmd_calibrate();

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_translate(-20 * 65536, 0);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

cmd(BEGIN(BITMAPS));

cmd_loadidentity();

cmd_translate(20 * 65536, 0);

cmd_setmatrix();

cmd(VERTEX2II(68, 28, 0, 0));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 159
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.61 CMD_CALIBRATESUB

This command is used to execute the touch screen calibration routine for a sub-window. Like
CMD_CALIBRATE, except that instead of using the whole screen area, uses a smaller sub-window
specified for the command. This is intended for panels which do not use the entire defined surface.

Please note that this command only applies to RTE and compatibility mode of CTSE.

C prototype

void cmd_calibratesub(uint16_t x,
 uint16_t y,
 uint16_t w,
 uint16_t h,
 uint32_t result);

Parameters

x
x-coordinate of top-left of subwindow, in pixels.

y
y-coordinate of top-left of subwindow, in pixels.

w
width of subwindow, in pixels.

h

height of subwindow, in pixels.

result
output parameter; written with 0 on failure.

Command layout

+0 CMD_CALIBRATESUB(0xFFFF FF60)

+4 x

+6 y

+8 w

+10 h

+12 result

Note: BT817/8 specific command

Examples

cmd_dlstart();

cmd(CLEAR(1,1,1));

cmd_text(600, 140, 31, OPT_CENTER, "Please tap on the dot");

//Calibrate a touch screen for 1200x280 screen

cmd_calibratesub(0,0, 1200,280,0);

5.62 CMD_SETROTATE

This command is used to rotate the screen.

C prototype

void cmd_setrotate(uint32_t r);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 160
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Parameters

r
The value from 0 to 7. The same definition as the value in REG_ROTATE. Refer to the
section Rotation for more details.

Description

CMD_SETROTATE sets REG_ROTATE to the given value r, causing the screen to
rotate. It also appropriately adjusts the touch transform matrix so that coordinates of touch points
are adjusted to rotated coordinate system.

Command layout

+0 CMD_SETROTATE (0xFFFF FF36)
+4 r

Examples

cmd_setrotate(2); //Put the display in portrait mode

5.63 CMD_SPINNER

This command is used to start an animated spinner. The spinner is an animated overlay that shows
the user that some tasks is continuing. To trigger the spinner, create a display list and then use
CMD_SPINNER. The coprocessor engine overlays the spinner on the current display list, swaps the

display list to make it visible, then continuously animates until it receives CMD_STOP.
REG_MACRO_0 and REG_MACRO_1 register is utilized to perform the animation kind of effect. The
frequency of point’s movement is with respect to the display frame rate configured.

Typically for 480x272 display panels the display rate is ~60fps. For style 0 and 60fps, the point
repeats the sequence within 2 seconds. For style 1 and 60fps, the point repeats the sequence within
1.25 seconds. For style 2 and 60fps, the clock hand repeats the sequence within 2 seconds. For style

3 and 60fps, the moving dots repeat the sequence within 1 second. Note that only one of
CMD_SKETCH, CMD_SCREENSAVER, or CMD_SPINNER can be active at one time.

C prototype

void cmd_spinner(int16_t x,

 int16_t y,
 uint16_t style,
 uint16_t scale);

Command layout

+0 CMD_SPINNER(0xFFFF FF16)

+4 x

+6 y

+8 style

+10 scale

Parameters

 x
The X coordinate of top left of spinner

 y

 The Y coordinate of top left of spinner

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 161
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

style
 The style of spinner. Valid range is from 0 to 3.

 scale
 The scaling coefficient of spinner. 0 means no scaling.

Examples

style 0, a circle of dots:

Style 1, a line of dots:

Style 2, a rotating clock hand:

Style 3, two orbiting dots:

Create a display list, then start the spinner:

Half screen, scale:

Full screen, scale 2:

cmd_dlstart();

cmd(CLEAR(1,1,1));

cmd_text(80, 30, 27, OPT_CENTER, "Please wait...");

cmd_spinner(80, 60, 0, 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 162
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.64 CMD_SCREENSAVER

This command is used to start an animated screensaver. After the screensaver command, the
coprocessor engine continuously updates REG_MACRO_0 with VERTEX2F with varying (x,y)
coordinates. With an appropriate display list, this causes a bitmap to move around the screen without
any MCU work. Command CMD_STOP stops the update process. Note that only one of
CMD_SKETCH, CMD_SCREENSAVER, or CMD_SPINNER can be active at one time.
C prototype

void cmd_screensaver();

Description

REG_MACRO_0 is updated with respect to frame rate (depending on the display registers
configuration). Typically for a 480x272 display the frame rate is around 60 frames per second.

Command layout

+0 CMD_SCREENSAVER(0xFFFF FF2F)

Examples

To start the screensaver, create a display list using a MACRO instruction – the coprocessor engine
will update it continuously:

cmd_screensaver();

cmd(BITMAP_SOURCE(0));

cmd(BITMAP_LAYOUT(RGB565, 128, 64));

cmd(BITMAP_SIZE(NEAREST,BORDER,BORDER, 40, 30));

cmd(BEGIN(BITMAPS));

cmd(MACRO(0));

cmd(DISPLAY());

5.65 CMD_SKETCH

This command is used to start a continuous sketch update. The Coprocessor engine continuously
samples the touch inputs and paints pixels into a bitmap, according to the given touch (x, y). This
means that the user touch inputs are drawn into the bitmap without any need for MCU work.

CMD_STOP is to be sent to stop the sketch process.

Note that only one of CMD_SKETCH, CMD_SCREENSAVER, or CMD_SPINNER can be active at
one time.

C prototype

void cmd_sketch(int16_t x,
int16_t y,
uint16_t w,
uint16_t h,
uint32_t ptr,
uint16_t format);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 163
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Parameters

x
x-coordinate of sketch area top-left, in pixels

y
y-coordinate of sketch area top-left, in pixels

w
width of sketch area, in pixels

h
height of sketch area, in pixels

ptr

base address of sketch bitmap

format

format of sketch bitmap, either L1 or L8

Note: The update frequency of bitmap data located at ptr depends on the sampling frequency of the
built-in ADC circuit, which is up to 1000 Hz.

Command layout

+0 CMD_SKETCH(0xFFFF FF30)

+4 x

+6 y

+8 w

+10 h

+12 ptr

+16 format

Examples

To start sketching into a 480x272 L1 bitmap:

cmd_memzero(0, 480 * 272 / 8);

cmd_sketch(0, 0, 480, 272, 0, L1);

//Then to display the bitmap

cmd(BITMAP_SOURCE(0));

cmd(BITMAP_LAYOUT(L1, 60, 272));

cmd(BITMAP_SIZE(NEAREST, BORDER, BORDER, 480, 272));

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(0, 0, 0, 0));

//Finally, to stop sketch updates

cmd_stop();

5.66 CMD_STOP

This command is to inform the coprocessor engine to stop the periodic operation, which is triggered
by CMD_SKETCH , CMD_SPINNER or CMD_SCREENSAVER.

C prototype

void cmd_stop();

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 164
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Command layout

+0 CMD_STOP(0xFFFF FF17)

Description

For CMD_SPINNER and CMD_SCREENSAVER, REG_MACRO_0 and REG_MACRO_1 updating
will be stopped.

For CMD_SKETCH, the bitmap data in RAM_G updating will be stopped.
Examples

See CMD_SKETCH, CMD_SPINNER, CMD_SCREENSAVER.

5.67 CMD_SETFONT

CMD_SETFONT is used to register one custom defined bitmap font into the coprocessor engine. After
registration, the coprocessor engine is able to use the bitmap font with corresponding commands.

Note that CMD_SETFONT does not set up the font’s bitmap parameters. The MCU should do this
before using the font. For further details about how to set up a custom font, refer to ROM and RAM
Fonts.

C prototype

void cmd_setfont(uint32_t font,

 uint32_t ptr);
Command layout

+0 CMD_SETFONT(0xFFFF FF2B)

+4 font

+8 ptr

Parameters

font

The bitmap handle from 0 to 31

ptr
The metrics block address in RAM_G. 4 bytes aligned is required.

Examples

With a suitable font metrics block loaded in RAM_G at address 1000, to set it up for use with objects
as font 7:

cmd(BITMAP_LAYOUT(L8,16, 10));

cmd(BITMAP_SIZE(NEAREST,BORDER,BORDER, 16, 10));

cmd(BITMAP_SOURCE(1000));

cmd_setfont(7, 1000);

cmd_button(20, 20, // x,y

 120, 40, // width,height in pixels

 7, // font 7, just loaded

 0, // default options,3D style

 "custom font!");

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 165
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.68 CMD_SETFONT2

This command is used to set up a custom font. To use a custom font with the coprocessor objects,
create the font definition data in RAM_G and issue CMD_SETFONT2, as described in ROM and RAM
Fonts.

Note that CMD_SETFONT2 sets up the font’s bitmap parameters by appending commands
BITMAP_SOURCE,BITMAP_LAYOUT and BITMAP_SIZE to the current display list.

For details about how to set up a custom font, refer to ROM and RAM Fonts.

C prototype

void cmd_setfont2 (uint32_t font, uint32_t ptr, uint32_t firstchar);

Command layout

+0 CMD_SETFONT2(0xFFFF FF3B)

+4 font

+8 ptr

+12 firstchar

Parameters

font
The bitmap handle from 0 to 31

ptr

32-bit aligned memory address in RAM_G of font metrics block

firstchar
The ASCII value of first character in the font. For an extended font block, this should be
zero.

Examples

With a suitable font metrics block loaded in RAM_G at address 100000, first character’s ASCII value
32, to use it for font 20:

5.69 CMD_SETSCRATCH

This command is used to set the scratch bitmap for widget use. Graphical objects use a bitmap
handle for rendering. By default, this is bitmap handle 15. This command allows it to be set to any
bitmap handle. This command enables user to utilize bitmap handle 15 safely.

C prototype

void cmd_setscratch(uint32_t handle);

cmd_setfont2(20, 100000, 32);

cmd_button(15, 30, 130, 20, 18, 0, "This is font 18");

cmd_button(15, 60, 130, 20, 20, 0, "This is font 20");

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 166
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Parameters

handle
bitmap handle number, 0~31

Command layout

+0 CMD_SETSCRATCH (0xFFFF FF3C)

+4 handle

Examples

With the setscratch command, set the handle 31, handle 15 is available for application use,
for example as a font:

5.70 CMD_ROMFONT

This command is to load a ROM font into bitmap handle. By default, ROM fonts 16-31 are loaded

into bitmap handles 16-31. This command allows any ROM font 16-34 to be loaded into any bitmap
handle.

C prototype

void cmd_romfont (uint32_t font,

 uint32_t romslot);

Parameters

font
bitmap handle number, 0~31

romslot
ROM font number, 16~34

Command layout

+0 CMD_ROMFONT (0xFFFF FF3F)

+4 font

+8 romslot

Examples

Loading hardware fonts 31-34 into bitmap handle 1:

cmd_setscratch(31);

cmd_setfont2(15, 100000, 32);

cmd_button(15, 30, 130, 20, 15, 0, "This is font 15");

//Restore bitmap handle 31 to ROM Font number 31.

cmd_romfont(31, 31);

cmd_romfont(1, 31);

cmd_text(0, 0, 1, 0, "31");

cmd_romfont(1, 32);

cmd_text(0, 60, 1, 0, "32");

cmd_romfont(1, 33);

cmd_text(80,-14, 1, 0, "33");

cmd_romfont(1, 34);

cmd_text(60, 32, 1, 0, "34");

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 167
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.71 CMD_RESETFONTS

This command loads bitmap handles 16-31 with their default fonts.

C prototype

void cmd_resetfonts();

Parameters

 NA

Command layout

+0 CMD_RESETFONTS (0xFFFF FF52)

Examples

NA

5.72 CMD_TRACK

This command is used to track touches for a graphics object. EVE can assist the MCU in tracking
touches on graphical objects. For example, touches on dial objects can be reported as angles, saving
MCU computation. To do this the MCU draws the object using a chosen tag value, and registers a
track area for that tag. From then on, any touch on that object is reported in REG_TRACKER, and
multiple touches (if supported by the touch panel) in REG_TRACKER_1,REG_TRACKER_2,

REG_TRACKER_3, REG_TRACKER_4.

The MCU can detect any touch on the object by reading the 32-bit value in the five registers above.
The low 8 bits give the current tag, or zero if there is no touch. The high sixteen bits give the tracked
value. For a rotary tracker - used for clocks, gauges and dials - this value is the angle of the touch

point relative to the object center, in units of 1/65536 of a circle. 0 means that the angle is straight
down, 0x4000 left, 0x8000 up, and 0xc000 right.

For a linear tracker - used for sliders and scrollbars - this value is the distance along the tracked
object, from 0 to 65535.

Note: Multiple touch points are only available in BT81X Series with capacitive displays connected.

C prototype

void cmd_track(int16_t x,

int16_t y,
uint16_t w,
uint16_t h,
uint16_t tag);

Parameters

x
For linear tracker functionality, x-coordinate of track area top-left, in pixels.
For rotary tracker functionality, x-coordinate of track area center, in pixels.

y
For linear tracker functionality, y-coordinate of track area top-left, in pixels.
For rotary tracker functionality, y-coordinate of track area center, in pixels.

w
Width of track area, in pixels.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 168
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

h
Height of track area, in pixels.

Note: A w and h of (1,1) means that the tracker is rotary, and reports an angle value in

REG_TRACKER. A w and h of (0,0) disables the track functionality of the coprocessor

engine. Other values mean that the tracker is linear, and reports values along its length
from 0 to 65535 in REG_TRACKER

tag
tag of the graphics object to be tracked, 1-255

Command layout

+0 CMD_TRACK(0xFFFF FF2C)

+4 x

+6 y

+8 w

+10 h

+12 tag

Description

The Coprocessor engine tracks the graphics object in rotary tracker mode and linear tracker mode:

• rotary tracker mode – Track the angle between the touch point and the center of the graphics
object specified by the tag value. The value is in units of 1/65536 of a circle. 0 means that
the angle is straight down, 0x4000 left, 0x8000 up, and 0xC000 right from the center.

• Linear tracker mode – If parameter w is greater than h, track the relative distance of the
touch point to the width of the graphics object specified by the tag value. If parameter w
is not greater than h, track the relative distance of touch points to the height of the

graphics object specified by the tag value. The value is in units of 1/65536 of the width or
height of the graphics object. The distance of the touch point refers to the distance from
the top left pixel of graphics object to the coordinate of the touch point.

Please note that the behavior of CMD_TRACK is not defined if the center of the track object (in case
of rotary track) or top left of the track object (in case of linear track) is outside the visible region in
display panel.

Examples

Horizontal track of rectangle dimension 40x12 pixels and the present touch is at 50%:

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(RECTS));

dl(VERTEX2F(60 * 16,50 * 16));

dl(VERTEX2F(100 * 16,62 * 16));

dl(COLOR_RGB(255, 0, 0));

dl(VERTEX2F(60 * 16,50 * 16));

dl(VERTEX2F(80 * 16,62 * 16));

dl(COLOR_MASK(0 ,0 ,0 ,0));

dl(TAG(1));

dl(VERTEX2F(60 * 16,50 * 16));

dl(VERTEX2F(100 * 16,62 * 16));

cmd_track(60, 50, 40, 12, 1);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 169
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Vertical track of rectangle dimension 12x40 pixels and the present touch is at 50%:

Circular track centered at (80,60) display location

To draw a dial with tag 33 centered at (80, 60), adjustable by touch:

To make an adjustable slider with tag 34:

5.73 CMD_SNAPSHOT

This command causes the coprocessor engine to take a snapshot of the current screen, and write
the result into RAM_G as an ARGB4 bitmap. The size of the bitmap is the size of the screen, given
by the REG_HSIZE and REG_VSIZE registers.

uint16_t val = 0x8000;

cmd_track(20, 50, 120, 8, 34);

while (1) {

 cmd(TAG(34));

 cmd_slider(20, 50, 120, 8, val, 65535);

 uint32_t tracker = rd32(REG_TRACKER);

 if ((tracker & 0xff) == 34)

 val = tracker >> 16;

}

uint16_t angle = 0x8000;

cmd_track(80, 60, 1, 1, 33);

while (1) {

 cmd(TAG(33));

 cmd_dial(80, 60, 55, 0, angle);

 uint32_t tracker = rd32(REG_TRACKER);

 if ((tracker & 0xff) == 33)

 angle = tracker >> 16;

}

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(TAG(1));

dl(BEGIN(POINTS));

dl(POINT_SIZE(20 * 16));

dl(VERTEX2F(80 * 16, 60 * 16));

cmd_track(80, 60, 1, 1, 1);

dl(CLEAR_COLOR_RGB(5, 45, 110));

dl(COLOR_RGB(255, 168, 64));

dl(CLEAR(1 ,1 ,1));

dl(BEGIN(RECTS));

dl(VERTEX2F(70 * 16,40 * 16));

dl(VERTEX2F(82 * 16,80 * 16));

dl(COLOR_RGB(255, 0, 0));

dl(VERTEX2F(70 * 16,40 * 16));

dl(VERTEX2F(82 * 16,60 * 16));

dl(COLOR_MASK(0 ,0 ,0 ,0));

dl(TAG(1));

dl(VERTEX2F(70 * 16,40 * 16));

dl(VERTEX2F(82 * 16,80 * 16));

cmd_track(70, 40, 12, 40, 1);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 170
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

During the snapshot process, the display should be disabled by setting REG_PCLK to 0 to avoid
display glitch. Since the coprocessor engine needs to write the result into the destination address,
the destination address must never be used or referenced by the graphics engine.

C prototype

void cmd_snapshot(uint32_t ptr);

Parameters

ptr

Snapshot destination address, in RAM_G

Command layout

+0 CMD_SNAPSHOT(0xFFFF FF1F)

+4 ptr

Examples

To take a snapshot of the current 160 x 120 screens, then use it as a bitmap in the new display list:

wr(REG_PCLK,0);//Turn off the PCLK

wr16(REG_HSIZE,120);

wr16(REG_WSIZE,160);

cmd_snapshot(0);//Taking snapshot.

wr(REG_PCLK,5);//Turn on the PCLK

wr16(REG_HSIZE,272);

wr16(REG_WSIZE,480);

cmd_dlstart();

cmd(CLEAR(1,1,1));

cmd(BITMAP_SOURCE(0));

cmd(BITMAP_LAYOUT(ARGB4, 2 * 160, 120));

cmd(BITMAP_SIZE(NEAREST, BORDER, BORDER, 160, 120));

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(10, 10, 0, 0));

5.74 CMD_SNAPSHOT2

The snapshot command causes the coprocessor to take a snapshot of part of the
current screen, and write it into graphics memory as a bitmap. The size, position
and format of the bitmap may be specified. During the snapshot process, the
display output process is suspended. LCD displays can easily tolerate variation
in display timing, so there is no noticeable flicker.

C prototype

void cmd_snapshot2(uint32_t fmt,
 uint32_t ptr,
 int16_t x,
 int16_t y,

 uint16_t w,
 uint16_t h);

Parameters

fmt

Output bitmap format, one of RGB565, ARGB4 or 0x20. The value 0x20 produces an

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 171
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

ARGB8 format snapshot.

Refer to BITMAP_LAYOUT for format List.

ptr

Snapshot destination address, in RAM_G

x
x-coordinate of snapshot area top-left, in pixels

y

y-coordinate of snapshot area top-left, in pixels

w
width of snapshot area, in pixels. Note when fmt is 0x20, i.e., in ARGB8 format, the value of

width shall be doubled.

h

height of snapshot area, in pixels

Command layout

+0 CMD_SNAPSHOT2(0xFFFF FF37)

+4 fmt

+8 ptr

+12 x

+14 y

+16 w

+18 h

Examples

To take a 32x32 snapshot of the top-left of the screen, then use it as a bitmap
in the new display list:

cmd_snapshot2(RGB565, 0, 0, 0, 32, 32);

cmd_dlstart();

cmd_setbitmap(0, RGB565, 32, 32);

cmd(CLEAR(1,1,1));

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(10, 10, 0, 0));

Note: For ARGB8 format, pixel memory layout is as below:

ARGB8 Pixel Format

31 24 23 16 15 8 7 0

Alpha Channel Red Channel Green Channel Blue Channel

5.75 CMD_SETBITMAP

This command will generate the corresponding display list commands for given bitmap information,

sparing the effort of writing display list manually. The display list commands to be generated
candidates are as below:

⚫ BITMAP_SOURCE
⚫ BITMAP_LAYOUT/ BITMAP_LAYOUT_H
⚫ BITMAP_SIZE/ BITMAP_SIZE_H

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 172
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The parameters filter/wrapx/wrapy in BITAMP_SIZE is always set to
NEAREST/BORDER/BORDER value in the generated display list commands.

⚫ BITMAP_EXT_FORMAT

C prototype

void cmd_setbitmap(uint32_t source,

 uint16_t fmt,
 uint16_t width,
 uint16_t height);

Parameters

source
Source address for bitmap, in RAM_G or flash memory, as a BITMAP_SOURCE parameter.

it shall be in terms of block unit (each block is 32 bytes) when it is located in flash
memory.

fmt

Bitmap format, see the definition in BITMAP_EXT_FORMAT.

width
bitmap width, in pixels. 2 bytes value.

height
bitmap height, in pixels. 2 bytes value.

Command layout

+0 CMD_SETBITMAP(0xFFFF FF43)

+4 source

+8 fmt

+10 width

+12 height

Examples

Display an ASTC image with width 35 and height 35 pixels residing in flash address 6016 (188 *

32):

Note:

• Two bytes is required to be appended after last parameter for 4 bytes alignment.

• In cases where the format is PALETTED4444/PALETTED8/PALETTED565, since no
display list command PALETTE_SOURCE is generated, the user must manually write the

PALETTE_SOURCE command.

cmd_dlstart();

cmd_setbitmap(0x800000 | 188, COMPRESSED_RGBA_ASTC_5x5_KHR, 35, 35);

cmd(CLEAR(1,1,1));

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(10, 10, 0, 0));

cmd_swap();

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 173
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.76 CMD_LOGO

The logo command causes the coprocessor engine to play back a short animation of the Bridgetek
logo. During logo playback the MCU shall not write or render any display list. After 2.5 seconds have
elapsed, the coprocessor engine writes zero to REG_CMD_READ and REG_CMD_WRITE, and

starts waiting for commands. After this command is complete, the MCU shall write the next
command to the starting address of RAM_CMD.

C prototype

void cmd_logo();

Command layout

+0 CMD_LOGO(0xFFFF FF31)

Examples

To play back the logo animation:

cmd_logo();

delay(3000); // Optional to wait

//Wait till both read & write pointer register are equal.

While(rd16(REG_CMD_WRITE) != rd16(REG_CMD_READ));

5.77 CMD_FLASHERASE

This command erases the attached flash storage.

C prototype

void cmd_flasherase();

Command layout

+0 CMD_FLASHERASE(0xFFFF FF44)

Examples

 NA

cmd_dlstart();

cmd(BITMAPS(2)); //Use bitmap handle 2

cmd_setbitmap(RAM_G, PALETTED565, 35, 35); //Set up parameters for

bitmap handle 2

cmd(PALETTE_SOURCE(RAM_G + 35*35)); //Specify the address of

palette(color table), assuming it comes right after the index

cmd(CLEAR(1,1,1));

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(10, 10, 2, 0)); //draw image with bitmap handle 2

cmd_swap();

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 174
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.78 CMD_FLASHWRITE

This command writes the following inline data to flash storage. The storage should have been
previously erased using CMD_FLASHERASE.

C prototype

void cmd_flashwrite(uint32_t ptr,

 uint32_t num);
Parameters

ptr
Destination address in flash memory. Must be 256-byte aligned. Start address of first block is
from zero.

num
Number of bytes to write, must be multiple of 256

Command layout

+0 CMD_FLASHEWRTITE (0xFFFF FF45)

+4 ptr

+8 num

+12…n bytes1 …byten

Examples

NA

5.79 CMD_FLASHPROGRAM

This command writes the data to blank flash. It assumes that the flash is previously programmed to
all-ones, which is the default state of flash chip by manufacturers.

C prototype

void cmd_flashprogram(uint32_t dest,

 uint32_t src,

 uint32_t num);
Parameters

dst
destination address in flash memory. Must be 4096-byte aligned. Start address of first block is
from zero.

src

source data in main memory. Must be 4-byte aligned

num
number of bytes to write, must be multiple of 4096

Command layout

+0 CMD_FLASHEPROGRAM (0xFFFF FF70)

+4 dst

+8 src

+12 num

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 175
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

NA

5.80 CMD_FLASHREAD

This command reads data from flash into main memory.

C prototype

void cmd_flashread (uint32_t dest,
 uint32_t src,
 uint32_t num);

Parameters

dest

Destination address in RAM_G. Must be 4-byte aligned.
Start address of first block is from zero.

src
source address in flash memory. Must be 64-byte aligned.

num
number of bytes to write, must be multiple of 4

Command layout

+0 CMD_FLASHEREAD(0xFFFF FF46)

+4 dest

+8 src

+12 num

Examples

5.81 CMD_APPENDF

This command appends data from flash to the next available location in display list memory RAM_DL,

which was specified by REG_CMD_WRITE.

C prototype

 void cmd_appendf(uint32_t ptr,uint32_t num);

Parameters

ptr
 start of source commands in flash memory. Must be 64-byte aligned.

Start address of first block is from zero.

num
 number of bytes to copy. This must be a multiple of 4

Command layout

+0 CMD_APPENDF (0xFFFF FF59)
+4 ptr

// Read all of main RAM (1M bytes) from flash:

cmd_flashread(0, 4096, 1048576);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 176
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

+8 num

5.82 CMD_FLASHUPDATE

This command writes the given data to flash. If the data matches the existing contents of flash,
nothing is done. Otherwise, the flash is erased in 4K units, and the data is written.

C prototype

void cmd_flashupdate (uint32_t dest,
 uint32_t src,
 uint32_t num);

Parameters

dest

Destination address in flash memory. Must be 4096-byte aligned.
Start address of first block is from zero.

src

source address in main memory RAM_G. Must be 4-byte aligned.

num
number of bytes to write, must be multiple of 4096

Command layout

+0 CMD_FLASHUPDATE (0xFFFF FF47)

+4 dest

+8 src

+12 num

Example

5.83 CMD_FLASHDETACH

This command causes EVE to put the SPI device lines into hi-Z state. The only valid flash
operations when detached are the low-level SPI access commands as following:

• CMD_FLASHSPIDESEL
• CMD_FLASHSPITX
• CMD_FLASHSPIRX
• CMD_FLASHATTACH

Refer to the section - Flash interface in BT817/8 datasheet.

// The pseudo code below shows how to program the blob file to first block of flash

// Assume the flash is in detach mode and now attach it

cmd_flashattach();

// Now check if the flash is in basic mode after attaching

while (FLASH_STATUS_BASIC != rd8(REG_FLASH_STATUS));

//Write the BLOB file into the first block of flash

//Assume the BLOB file is in RAM_G

cmd_flashupdate(0, RAM_G, 4096);

// To check if the blob is valid , try to switch to full mode

cmd_flashfast(0);

while (FLASH_STATUS_BASIC != rd8(REG_FLASH_FULL));

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 177
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

C prototype

void cmd_flashdetach();

Command layout

+0 CMD_FLASHDETACH (0xFFFF FF48)

5.84 CMD_FLASHATTACH

This command causes EVE to re-connect to the attached SPI flash storage. After the command,
register REG_FLASH_STATE should be FLASH_STATUS_BASIC. Refer to the section - Flash

interface in BT817/8 datasheet.

C prototype

void cmd_flashattach();

Command layout

+0 CMD_FLASHATTACH (0xFFFF FF49)

5.85 CMD_FLASHFAST

This command causes the BT81X chip to drive the attached flash in full-speed mode, if possible.

Refer to the section - Flash interface in BT817/8 datasheet.

C prototype

void cmd_flashfast (uint32_t result);

Parameters

result
Written with the result code. If the command succeeds, zero is written as a result.

 Otherwise an error code is set as follows:

Error Code Meaning

0xE001 flash is not supported

0xE002 no header detected in sector 0 – is flash blank?

0xE003 sector 0 data failed integrity check

0xE004 device/blob mismatch – was correct blob loaded?

0xE005 failed full-speed test – check board wiring

Command layout

+0 CMD_FLASHFAST (0xFFFF FF4A)
+4 result

Note: To access any data in flash by EVE, host needs send this command at least once to EVE in
order to drive flash in full-speed mode. In addition, the flash chip is assumed to have correct blob

file programmed in its first block (4096 bytes). Otherwise, it will cause the failure of this command.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 178
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Example

NA

5.86 CMD_FLASHSPIDESEL

This command de-asserts the SPI CS signal. It is only valid when the flash has been detached, using
CMD_FLASHDETACH.

C prototype

void cmd_flashspidesel ();

Command layout

+0 CMD_FLASHSPIDESEL (0xFFFFFF4B)

Parameters

NA

5.87 CMD_FLASHSPITX

This command transmits the following bytes over the flash SPI interface. It is only valid when the
flash has been detached, using CMD_FLASHDETACH.

C prototype

oid cmd_flashspitx (uint32_t num);

Parameters

num
number of bytes to transmit

Command layout

+0 CMD_FLASHSPITX (0xFFFF FF4C)

+4 num

byte1…byten the data to transmit

Example

 Transmit single-byte 06:

5.88 CMD_FLASHSPIRX

This command receives bytes from the flash SPI interface, and writes them to main memory. It is
only valid when the flash has been detached, using CMD_FLASHDETACH.

C prototype

void cmd_flashspirx (uint32_t ptr,

cmd_flashdetach();

cmd_flashspidesel();

cmd_flashspitx(1);

cmd(0x00000006);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 179
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 uint32_t num);

Parameters

ptr

 destination address in RAM_G

num

 number of bytes to receive

Command layout

+0 CMD_FLASHSPIRX (0xFFFF FF4D)
+4 ptr

+4 num

Example

 Read 3 bytes from SPI flash to main memory locations 100,101,102:

5.89 CMD_CLEARCACHE

This command clears the graphics engine’s internal flash cache. It should be executed after
modifying graphics data in flash by CMD_FLASHUPDATE or CMD_FLASHWRITE, otherwise
bitmaps from flash may render "stale" data. It must be executed when the display list is empty,
immediately after a CMD_DLSTART command. Otherwise, it generates a coprocessor fault ("display

list must be empty") and sets REG_PCLK to zero.

C prototype

void cmd_clearcache ();

Command layout

+0 CMD_CLEARCACHE (0xFFFF FF4F)

Example

5.90 CMD_FLASHSOURCE

This command specifies the source address for flash data loaded by the CMD_LOADIMAGE,
CMD_PLAYVIDEO, CMD_VIDEOSTARTF and CMD_INFLATE2 commands with the OPT_FLASH
option.

C prototype

cmd_flashdetach();

cmd_flashspidesel();

cmd_flashspirx(100, 3);

//Flash is in Full mode and has the right content working with EVE

//Update the 4th block of flash chip with new bitmap data located at RAM_G+1024

cmd_flashupdate(4*4096, RAM_G+1024, 4*4096);

//To continue rendering the bitmap data in flash, need call cmd_clearcache

cmd_dlstart();

cmd_clearcache();

cmd_swap();

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 180
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

void cmd_flashsource (uint32_t ptr);

Parameters

ptr

flash address, must be 64-byte aligned. Start address of first block is from zero.

Command layout

+0 CMD_FLASHSOURCE (0xFFFF FF4E)
+4 ptr

5.91 CMD_VIDEOSTARTF

This command is used to initialize video frame decoder. The video data shall be present in flash

memory, and its address previously set using CMD_FLASHSOURCE. This command processes the
video header information, and completes when it has consumed it.

C prototype

void cmd_videostartf ();

Command layout

+0 CMD_VIDEOSTARTF (0xFFFF FF5F)

Example

5.92 CMD_ANIMSTART

This command is used to start an animation. If the channel was previously in use, the previous
animation is replaced.

C prototype

void cmd_animstart(int32_t ch,
 uint32_t aoptr,
 uint32_t loop);

Parameters

ch
Animation channel, 0-31. If no channel is available, then an “out of channels” exception is
raised.

aoptr

 The address of the animation object in flash memory.

loop
Loop flags. ANIM_ONCE plays the animation once, then cancel it. ANIM_LOOP pays the
animation in a loop. ANIM_HOLD plays the animation once, then displays the final frame.

cmd_flashsource(LOGO_VIDEO_FLASH_ADDRESS);

cmd_videostartf();

cmd_videoframe(4, 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 181
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Command layout

+0 CMD_ANIMSTART (0xFFFF FF53)

+4 ch

+8 aoptr

+12 loop

Example

See CMD_ANIMFRAME.

5.93 CMD_ANIMSTARTRAM

This command is used to start an animation in RAM_G. If the channel was previously in use, the
previous animation is replaced. The animation object is in RAM_G.

C prototype

void cmd_animstartram(int32_t ch,
 uint32_t aoptr,

 uint32_t loop);
Parameters

ch
Animation channel, 0-31. If no channel is available, then an “out of channels” exception is
raised.

aoptr

 Pointer to the animation object in RAM. Must be 64-byte aligned.

loop
Loop flags. ANIM_ONCE plays the animation once, then cancels it. ANIM LOOP plays the
animation in a loop. ANIM_HOLD plays the animation once, then displays the final frame.

Command layout

+0 CMD_ANIMSTARTRAM(0xFFFF FF6E)

+4 ch

+8 aoptr

+12 loop

Example

See CMD_ANIMFRAMERAM.

Note: BT817/8 specific command

5.94 CMD_RUNANIM

This command is used to Play/run animations until complete. Playback ends when either a specified
animation completes, or when host MCU writes to a control byte. Note that only animations started
with ANIM_ONCE complete. Pseudocode for CMD_RUNANIM is:

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 182
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

C prototype

void cmd_runram(uint32_t waitmask,
 uint32_t play);
Parameters

waitmask
32-bit mask specifying which animation channels to wait for. Animation ends when the
logical AND of this mask and REG_ANIM_ACTIVE is zero.

play
Address of play control byte. Animation stops when the byte at play is not zero. If this
feature is not required, the special value of -1 (0xFFFF FFFF) means that there is no

control byte.

Command layout

+0 CMD_RUNANIM(0xFFFF FF6F)

+4 waitmask

+8 play

do {

 if ((play != -1) && (*play != 0))

 break;

 CMD_DLSTART();

 Clear(1,1,1);

 CMD_ANIMDRAW(-1);

 CMD_SWAP();

} while ((waitmask & REG_ANIM_ACTIVE) == 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 183
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Example

Note: BT817/8 specific command

5.95 CMD_ANIMSTOP

This command stops one or more active animations.

C prototype

void cmd_animstop(int32_t ch);

Parameters

ch

 Animation channel, 0-31. If ch is -1, then all animations are stopped.

Command layout

+0 CMD_ANIMSTOP (0xFFFF FF54)

+4 ch

/***

play back several animations simultaneously

assume the animation is in flash

***/

/*

set up an channel for first animation

*/

cmd_animstart(1,4096, ANIM_ONCE);

cmd_animxy(400, 240); //The center of animation

/*

set up another channel for second animation

*/

cmd_animstart(2,4096 + 10*1024, ANIM_ONCE);

cmd_animxy(400, 240); //The center of animation

/*

set up another channel for second animation

*/

cmd_animstart(2,4096 + 10*1024, ANIM_ONCE);

cmd_animxy(400, 240); //The center of animation

/*

play back both animations and set up the control byte at 0xF0000 of RAM_G

*/

wr32(0xF0000, 1);

cmd_runanim(-1, 0xF0000); //The animation will be shown on display.

//......

/*

To stop the animation before it ends , write the contro byte to zerol

*/

wr32(0xF0000, 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 184
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.96 CMD_ANIMXY

This command sets the coordinates of an animation.

C prototype

void cmd_animxy (int32_t ch,
 int16_t x,

 int16_t y);
Parameters

ch
Animation channel, 0-31.

x

x screen coordinate for the animation center, in pixels

y
y screen coordinate for the animation center, in pixels

Command layout

+0 CMD_ANIMXY (0xFFFF FF55)

+4 ch

+8 x

+10 y

NOTE: If the pixel precision is not set to 1/16 in current graphics context, a VERTEX_FOMART(4)
is mandatory to precede this command.

5.97 CMD_ANIMDRAW

This command draws one or more active animations

C prototype

void cmd_animdraw (int32_t ch);

Parameters

ch
Animation channel, 0-31. If ch is -1, then it draws all undrawn animations in ascending
order.

Command layout

+0 CMD_ANIMDRAW(0xFFFF FF56)
+4 ch

5.98 CMD_ANIMFRAME

This command draws the specified frame of an animation

C prototype

void cmd_animframe (int16_t x,

 int16_t y,
 uint32_t aoptr,

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 185
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 uint32_t frame);
Parameters

x
 x screen coordinate for the animation center, in pixels.

y

 y screen coordinate for the animation center, in pixels.

aoptr
 The address of the animation object in flash memory.

frame

 Frame number to draw, starting from zero.

Command layout

+0 CMD_ANIMFRAME (0xFFFF FF5A)
+4 x

+6 y

+8 aoptr

+12 frame

NOTE: If the pixel precision is not set to 1/16 in current graphics context, a VERTEX_FOMART(4)

is mandatory to precede this command.

Example

5.99 CMD_ANIMFRAMERAM

This command draws the specified frame of an animation in RAM.

C prototype

void cmd_animframe (int16_t x,

 int16_t y,
 uint32_t aoptr,
 uint32_t frame);
Parameters

x
 x screen coordinate for the animation center, in pixels.

y

 y screen coordinate for the animation center, in pixels.

aoptr
 The address of the animation object in RAM_G. Must be 64-byte aligned.

frame

 Frame number to draw, starting from zero.

//Draw a frame located at the first available address of flash onto (0,400).

cmd_animframe(0, 400, 4096, 65);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 186
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Command layout

+0 CMD_ANIMFRAMERAM (0xFFFF FF6D)
+4 x

+6 y

+8 aoptr

+12 frame

Note: If the pixel precision is not set to 1/16 in current graphics context, a VERTEX_FOMART(4)

is mandatory to precede this command.

Example

Note: BT817/8 specific command

5.100 CMD_SYNC

This command waits for the end of the video scan out period, then it returns immediately. It may
be used to synchronize screen updates that are not part of a display list, and to accurately measure
the time taken to render a frame.

C prototype

void cmd_sync();

Command layout

+0 CMD_SYNC(0xFFFF FF42)

Examples

5.101 CMD_BITMAP_TRANSFORM

This command computes a bitmap transform and appends commands BITMAP_TRANSFORM_A –
BITMAP_TRANSFORM_F to the display list. It computes the transform given three corresponding

points in screen space and bitmap space. Using these three points, the command computes a matrix
that transforms the bitmap coordinates into screen space, and appends the display list commands
to set the bitmap matrix.

//Draw the 65th frame of the animation onto (400,240).The animation object is

in RAM_G+4096

cmd_animframeram(400, 240, 4096, 65);

//To synchronize with a frame:

cmd_sync();

//To update REG_MACRO_0 at the end of scan out, to avoid tearing:

cmd_sync();

cmd_memwrite(REG_MACRO_0, 4);

cmd(value);

//To measure frame duration

cmd_sync();

cmd_memcpy(0, REG_CLOCK, 4);

cmd_sync();

cmd_memcpy(4, REG_CLOCK, 4);

//the difference between locations 4 and 0 give the frame interval in clocks.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 187
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

C prototype

void cmd_bitmap_transform(int32_t x0,

int32_t y0,
int32_t x1,

int32_t y1,
int32_t x2,
int32_t y2,
int32_t tx0,
int32_t ty0,
int32_t tx1,

int32_t ty1,
int32_t tx2,
int32_t ty2,
uint16_t result)

Command layout

+0 CMD_BITMAP_TRANSFORM(0xFFFF FF21)

+4 x0

+8 y0

+10 x1

+16 y1

+20 x2

+24 y2

+28 tx0

+32 ty0

+36 tx1

+40 ty1

+44 tx2

+48 ty2

+52 result

Parameters

x0,y0

 Point 0 screen coordinate, in pixels

x1,y1
Point 1 screen coordinate, in pixels

x2,y2
Point 2 screen coordinate, in pixels

tx0,ty0
Point 0 bitmap coordinate, in pixels

tx1,ty1
Point 1 bitmap coordinate, in pixels

tx2,ty2
Point 2 bitmap coordinate, in pixels

result
result return. Set to -1 on success, or 0 if it is not possible to find the solution matrix.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 188
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

Transform a 64x64 bitmap:

5.102 CMD_TESTCARD

The testcard command loads a display list with a testcard graphic, and executes CMD_SWAP - swap
the current display list to display it. The graphic is automatically scaled for the current display size,
taking into account REG_HSIZE, REG_VSIZE, and REG_ROTATE. Features of the testcard are:

• white border at the extents to confirm screen edges and clock stability
• red, green, blue and white gradients to confirm color bit depth
• horizontal and vertical checker patterns to confirm signal integrity
• circle graphics to confirm aspect ratio
• radial line pattern to confirm antialias performance

C prototype

void cmd_testcard ()

Command layout

+0 CMD_TESTCARD(0xFFFF FF61)

Parameters

NA
Examples

Note: BT817/8 specific command

cmd(BLEND_FUNC(ONE, ZERO));

cmd_bitmap_transform(32,0, 64,32, 32,64,0,0, 0,64,

64,64, 0);

cmd(BEGIN(BITMAPS));

cmd(VERTEX2II(0, 0, 0, 0));

//To display a test card, call the command:

cmd_testcard();

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 189
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5.103 CMD_WAIT

This command waits for a specified number of microseconds. Delays of more than 1s (1000000 µs)
are not supported.

C prototype

void cmd_wait (uint32_t us)

Command layout

+0 CMD_WAIT(0xFFFF FF65)

+4 us

Parameters

us

 Delay time, in microseconds

Examples

Note: BT817/8 specific command

5.104 CMD_NEWLIST

This command starts the compilation of a command list into RAM_G. Instead of being executed, the
following commands are appended to the list, until the following CMD_ENDLIST. The list can then
be called with CMD_CALLIST. The following commands are not supported in command lists. Their
behavior is undefined:

• CMD_FLASHSPITX
• CMD_FLASHWRITE

• CMD_INFLATE
• CMD_NEWLIST

The following commands are supported only when using OPT_MEDIAFIFO:

• CMD_INFLATE2

• CMD_LOADIMAGE
• CMD_PLAYVIDEO

C prototype

void cmd_newlist (uint32_t a)

Command layout

+0 CMD_NEWLIST(0xFFFF FF68)

+4 a

Parameters

 a

//To delay for 16.7 ms:

cmd_wait(16700);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 190
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

memory address of start of command list

Examples

Note: BT817/8 specific command

5.105 CMD_ENDLIST

This command terminates the compilation of a command list into RAM_G. CMD_GETPTR can be
used to find the first unused memory address following the command list..

C prototype

void cmd_endlist ()

Command layout

+0 CMD_ENDLIST(0xFFFF FF69)

Examples

See CMD_NEWLIST.

Note: BT817/8 specific command

5.106 CMD_CALLLIST

This command calls a command list. After this command, all the commands compiled into the
command list between CMD_NEWLIST and CMD_ENDLIST are executed, as if they were executed

at the point of the CMD_CALLLIST. The command list itself may contain CMD_CALLLIST
commands, up to a depth of 4 levels.

C prototype

void cmd_calllist (uint32_t a)

/***

Create a command list at RAM_G address 0xF0000 by

sending the following commands to command buffer

***/

cmd_newlist(RAM_G + 0xF0000);

cmd(COLOR_RGB(255, 100, 0));

cmd_button(20, 20, 60, 60, 30, 0, "OK!");

cmd_endlist();

//......

/***

Invoke the command list

***/

cmd_dlstart();

cmd(COLOR_RGB(255, 255, 255));

cmd(CLEAR(1,1,1));

cmd_calllist(RAM_G + 0xF0000);

cmd(DISPLAY());

cmd_swap();

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 191
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Command layout

+0 CMD_CALLLIST(0xFFFF FF67)

+4 a

Parameters

a
memory address of the command list, in RAM_G

Examples

See CMD_NEWLIST.

Note: BT817/8 specific command

5.107 CMD_RETURN

This command ends a command list. Normally it is not needed by the user, because CMD_ENDLIST
appends CMD_RETURN to the command list. However it may be used in situations where the user
is constructing command lists offline.

C prototype

void cmd_return ()

Command layout

+0 CMD_RETURN(0xFFFF FF66)

Examples

/***

Construct a command list in RAM_G to show a button

***/

wr32(RAM_G + 0 * 4, SAVE_CONTEXT());

wr32(RAM_G + 1 * 4, COLOR_RGB(125, 125, 128));

wr32(RAM_G + 2 * 4, CMD_BUTTON);

wr16(RAM_G + 3 * 4, 160); //x coordinate of button

wr16(RAM_G + 3 * 4 + 2, 160); //y coordinate of button

wr16(RAM_G + 4 * 4, 123); //w

wr16(RAM_G + 4 * 4 + 2, 234); //h

wr16(RAM_G + 5 * 4, 31); //Font handle

wr16(RAM_G + 5 * 4 + 2, 0); //option parameter of cmd_button

wr8(RAM_G + 6 * 4, 'T');

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 192
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Note: BT817/8 specific command

5.108 CMD_FONTCACHE

This command enables the font cache, which loads all the bitmaps (glyph) used by a flash-based
font into a RAM_G area. This eliminates the bitmap rendering from flash, at the expense of using

some RAM_G. The area must be sized to hold all the bitmaps used in two consecutive frames. It

applies to ASTC based custom font only.

C prototype

 void cmd_fontcache(uint32_t font,
 uint32_t ptr,
 uint32_t num);

Command layout

+0 CMD_FONTCACHE(0xFFFF FF6B)

+4 font

+8 ptr

+12 num

Parameters

font
font handle to cache. Must be an extended format font.

ptr
Start of cache area, 64-byte aligned. The address in RAM_G.

num
Size of cache area in bytes, 4 byte aligned. Must be at least 16 Kbytes.

Examples

To cache font 13 with a 64 Kbyte font cache at the top of memory:

wr8(RAM_G + 6 * 4 + 1, 'E');

wr8(RAM_G + 6 * 4 + 2, 'S');

wr8(RAM_G + 6 * 4 + 3, 'T');

wr8(RAM_G + 7 * 4, '\0'); //the null terminators for string "TEST"

//Append extra 3 bytes for alignment purpose

wr8(RAM_G + 7 * 4 + 1, '\0');

wr8(RAM_G + 7 * 4 + 2, '\0');

wr8(RAM_G + 7 * 4 + 3, '\0');

wr32(phost, RAM_G + 8 * 4, RESTORE_CONTEXT());

wr32(phost, RAM_G + 9 * 4, CMD_RETURN); //Indicate the end of command list

//......

/***

Invoke the command list in RAM_G to render the button

***/

cmd_dlstart();

cmd(COLOR_RGB(255, 255, 255));

cmd(CLEAR(1,1,1));

cmd_calllist(RAM_G);

cmd(DISPLAY());

cmd_swap();

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 193
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Note: BT817/8 specific command

5.109 CMD_FONTCACHEQUERY

This command queries the capacity and utilization of the font cache.

C prototype

 void cmd_fontcachequery(uint32_t total,
 uint32_t used);
Command layout

+0 CMD_FONTCACHEQUERY(0xFFFF FF6C)

+4 total

+8 used

Parameters

total
Output parameter; Total number of available bitmaps in the cache, in bytes.

used
Output parameter; Number of used bitmaps in the cache, in bytes

Examples

Note: BT817/8 specific command

5.110 CMD_GETIMAGE

This command returns all the attributes of the bitmap made by the previous CMD_LOADIMAGE,

CMD_PLAYVIDEO, CMD_VIDEOSTART or CMD_VIDEOSTARTF.

C prototype

 void cmd_getimage(uint32_t source,
 uint32_t fmt,
 uint32_t w,

 uint32_t h,
 uint32_t palette);

Command layout

+0 CMD_GETIMAGE (0xFFFF FF64)

+4 source

+8 fmt

cmd_fontache(13, 0xf0000, 0x10000);

uint32_t total, used;

uint16_t ram_fifo_offset = rd16(REG_CMD_WRITE);

cmd_fontachequery(total, used);

total = rd32(RAM_CMD + (ram_fifo_offset + 4) % 4096);

used = rd32(RAM_CMD + (ram_fifo_offset + 8) % 4096);

printf("Font cache usage: %d / %d", used, total);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 194
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

+12 w

+16 h

+20 palette

Parameters

source

Output parameter; source address of bitmap.

fmt
Output parameter; format of the bitmap

w

Width of bitmap, in pixels

h
Height of bitmap, in pixels

palette
Palette data of the bitmap if fmt is PALETTED565 or PALETTED4444. Otherwise, zero.

Examples

Note: BT817/8 specific command

5.111 CMD_HSF

C prototype

 void cmd_hsf(uint32_t w);

Command layout

+0 CMD_HSF (0xFFFF FF62)

+4 w

Parameters

w
Output pixel width, which must be less than REG_HSIZE. 0 disables HSF.

//To find the base address and dimensions of the previously loaded image

uint32_t source, fmt, w, h, palette;

uint16_t cmd_fifo_offset = rd16(REG_CMD_WRITE);

cmd_getimage(src, fmt, w, h, palette);

src = rd32(RAM_CMD + (cmd_fifo_offset) + 4 % 4096);

fmt = rd32(RAM_CMD + (cmd_fifo_offset) + 8 % 4096);

w = rd32(RAM_CMD + (cmd_fifo_offset) + 12 % 4096);

h = rd32(RAM_CMD + (cmd_fifo_offset) + 16 % 4096);

palette = rd32(RAM_CMD + (cmd_fifo_offset + 20) % 4096);

cmd_setbitmap(src, fmt, w, h);

if (palette != 0) PaletteSource(palette);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 195
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Examples

A popular panel format is 800×480. This gives a logical aspect ratio of

800/480 = 1.6667

However, the physical size of the panel is 153.84 × 85.63mm, giving an aspect ratio of 1.796. This
difference means that the panel has non-square pixels. So, we can compute the logical width of
the panel, keeping the height constant:

480 × (153.84/85.63) = 862.3

So, by rendering all graphics at 862×480 then resizing to 800×480, all drawing can assume
square pixels. To configure this panel, set REG HSIZE to 862, then issue this command:

To disable the HSF, do:

Note: BT817/8 specific command

5.112 CMD_PCLKFREQ

This command sets REG_PCLK_FREQ to generate the closest possible frequency to the one

requested. If no suitable frequency can be found, the result field is zero and REG_PCLK_FREQ is
unchanged.

C prototype

 void cmd_pclkfreq(uint32_t ftarget,

 int32_t rounding,
 uint32_t factual);

Command layout

+0 CMD_PCLKFREQ (0xFFFF FF6A)

+4 ftarget

+8 rounding

+12 factual

Parameters

ftarget
Target frequency, in Hz.

rounding
Approximation mode. Valid values are 0, -1, 1:

0 is nearest,
-1 is highest frequency less than or equal to target,

 1 is lowest frequency greater than or equal to target.
factual
Output parameter; Actual frequency achieved. If no frequency was found, it is zero.

cmd_hsf(800);

cmd_hsf(0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 196
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Important Note:
When using this command, the flash BLOB is required in order to ensure that the calculated PLL2
setting remains within the specification of 228MHz. Therefore, before using this command, ensure
that the following steps have been taken:

- External Flash chip connected to the BT817/8

- External Flash chip has the BLOB installed in the first 4096 bytes beginning at 0
- External Flash chip has been set to full-speed mode

It is also possible to set the REG_PCLK_FREQ by writing directly. For this, users can refer to the
table RGB PCLK Frequency in EXTSYNC mode in the Parallel RGB Interface section of the
BT817/8 datasheet which has recommended values. This can be used instead of CMD_PCLKFREQ

in all cases and is particularly recommended when no flash is fitted.

Examples

Note: BT817/8 specific command

//Assume the first 4096 bytes of flash chip is installed with Blob

//Switch the state of flash to full-speed mode

cmd_flashfast(0);

//......

//To set the output PCLK as close to 9 MHz as possible:

cmd_pclkfreq(9000000, 0, 0);

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 197
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

6 ASTC

ASTC stands for Adaptive Scalable Texture Compression, an open standard developed by ARM® for
use in mobile GPUs. ASTC is a block-based lossy compression format. The compressed image is
divided into a number of blocks of uniform size, which makes it possible to quickly determine which
block a given texel resides in. Each block has a fixed memory footprint of 128 bits, but these bits
can represent varying numbers of texels (the block footprint).Block footprint sizes are not confined

to powers-of-two, and are also not confined to be square. For 2D formats the block dimensions range
from 4 to 12 texels. Using ASTC for the large ROM fonts can save considerable space. Encoding the
four largest fonts in ASTC format gives no noticeable loss in quality and reduces the ROM size from
1M Byte to about 640K Kbytes.

BT81X series empowers animation features and Unicode support based on ASTC format. Through
ASTC format, BT81X Series is able to show images directly from flash memory without taking the

precious RAM_G space. With enough ASTC images in flash memory or RAM_G, it is possible for

user to construct an image-rich GUI application.

6.1 ASTC RAM Layout

ASTC blocks represent between 4x4 to 12x12 pixels. Each block is 16 bytes in memory. Please see
the Table 13 – BITMAP_LAYOUT Format List for more details. In a nutshell, 4x4 stands for lowest
compression rate but best quality while 12x12 means for highest compression rate but worst quality.
Users may need evaluate the image quality of various ASTC blocks on hardware in order to achieve
the trade-off.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 198
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

ASTC bitmaps in main memory must be 16-byte aligned. However, for a multi-cell bitmap to use the
CELL command, the source address of each bitmap cell must start on a multiple of 4 blocks, i.e.,
64-byte aligned.

The mapping from bitmap coordinates to memory locations is not always linear. Instead, blocks are

grouped into 2x2 tiles. Within the tile the order is:

0 3

1 2

When there is an odd number of blocks on a line, the final two blocks are packed into a 1x2. When
there is an odd number of rows, then the final row of blocks is linear.

The above diagram shows the same piece of memory loaded with ASTC blocks drawn with ascending
memory addresses. The first column shows the addresses used by cell 0, the second column cell 1.

6.2 ASTC Flash Layout

ASTC bitmaps in flash must be 64-byte aligned. This means that multi-celled bitmaps must have a
size which is a multiple of 4 blocks. In particular fonts in flash must use a multiple of four blocks per
character. Note that only bitmaps with multiple-of-four size have cell 1 shown.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 199
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

7 Contact Information

Head Quarters – Singapore Branch Office – Taipei, Taiwan

Bridgetek Pte Ltd
Address: 1 Tai Seng Avenue, Tower A #03-05
Singapore 536464
Tel No : (+65) 6547 4827

Bridgetek Pte Ltd, Taiwan Branch
2 Floor, No. 516, Sec. 1, Nei Hu Road, Nei Hu
District
Taipei 114
Taiwan, R.O.C.
Tel: +886 (2) 8797 5691
Fax: +886 (2) 8751 9737

E-mail (Sales) sales.apac@brtchip.com E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.apac@brtchip.com E-mail (Support) support.apac@brtchip.com

Branch Office - Glasgow, United Kingdom Branch Office – Vietnam

Bridgetek Pte. Ltd.
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

Bridgetek VietNam Company Limited
Lutaco Tower Building, 5th Floor, 173A Nguyen Van
Troi,
Ward 11, Phu Nhuan District,
Ho Chi Minh City, Vietnam
Tel: 08 38453222
Fax: 08 38455222

E-mail (Sales) sales.emea@brtichip.com E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.emea@brtchip.com E-mail (Support) support.apac@brtchip.com

Web Site

http://brtchip.com/

Distributor and Sales Representatives

Please visit the Sales Network page of the Bridgetek Web site for the contact details of our distributor(s) and
sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Bridgetek Pte Limited

(BRTChip) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance

requirements. All application-related information in this document (including application descriptions, suggested Bridgetek

devices and other materials) is provided for reference only. While Bridgetek has taken care to assure it is accurate, this

information is subject to customer confirmation, and Bridgetek disclaims all liability for system designs and for any applications

assistance provided by Bridgetek. Use of Bridgetek devices in life support and/or safety applications is entirely at the user’s risk,

and the user agrees to defend, indemnify and hold harmless Bridgetek from any and all damages, claims, suits or expense

resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual

property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or

the product described in this document, may be adapted or reproduced in any material or electronic form without the prior
written consent of the copyright holder. Bridgetek Pte Limited, 178 Paya Lebar Road, #07-03, Singapore 409030. Singapore

Registered Company Number: 201542387H.

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 200
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix A – References

Document References

BT815/6 Datasheet
BT817/8 Datasheet
OpenGL 4.5 Reference Pages

Acronyms and Abbreviations

Terms Description

ADC Analog-to-digital

API Application Programming Interface

AVI Audio Video Interactive

ASTC Adaptive Scalable Texture Compression

ASCII American Standard Code for Information Interchange

CTPM Capacitive Touch Panel Module

CTSE Capacitive Touch Screen Engine

EVE Embedded Video Engine

FIFO First In First Out buffer

I2C Inter-Integrated Circuit

JPEG Joint Photographic Experts Group

LCD Liquid Crystal Display

MCU Micro controller unit

MPU Microprocessor Unit

PCB Printed Circuit Board

PCM Pulse-Code Modulation

PNG Portable Network Graphics

PWM Pulse Width Modulation

RAM Random Access Memory

RTE Resistive Touch Engine

ROM Read Only Memory

SPI Serial Peripheral Interface

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 201
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix B – List of Tables/ Figures/ Registers/ Code
Snippets

List of Tables

Table 1 – API Reference Definitions ... 12

Table 2 – Updated Commands in BT81X ... 13

Table 3 – Memory Map .. 14

Table 4 – Read Chip Identification Code ... 16

Table 5 – Flash Interface states and commands .. 19

Table 6 – Bitmap Rendering Performance ... 27

Table 7 – Common Registers Summary ... 35

Table 8 – RTE Registers Summary .. 37

Table 9 – CTSE Registers Summary ... 40

Table 10 – Graphics Context... 54

Table 11 – Graphics Primitive Definition ... 57

Table 12 – Bitmap formats and bits per pixel .. 58

Table 13 – BITMAP_LAYOUT Format List .. 59

Table 14 – L1/L2/L4/L8 Pixel Format ... 61

Table 15 – ARGB2/RGB332 Pixel Format .. 61

Table 16 – RGB565/PALETTED565 Pixel Format .. 61

Table 17 – ARGB1555/ARGB4/PALETTED4444 Pixel Format .. 62

Table 18 – PALETTED8 Pixel Format .. 62

Table 19 – BLEND_FUNC Constant Value Definition ... 72

Table 20 – STENCIL_OP Constants Definition .. 89

Table 21 – VERTEX_FORMAT and Pixel Precision ... 93

Table 22 – Widgets Color Setup Table.. 97

Table 23 – Legacy Font Metrics Block .. 98

Table 24 – Extended Font Metrics Block ... 99

Table 25 – String Format Specifier ... 106

Table 26 – Coprocessor Faults Strings .. 107

Table 27 – Coprocessor Engine Graphics State ... 108

Table 28 – Parameter OPTION Definition ... 109

List of Figures

Figure 1 – BT81X data flow .. 15

Figure 2 – Getting Started Example ... 21

Figure 3 – Widget List .. 96

Figure 4 – ROM Font List ... 102

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 202
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

List of Registers

Register Definition 1 – REG_TAG Definition .. 28

Register Definition 2 – REG_TAG_Y Definition ... 28

Register Definition 3 – REG_TAG_X Definition ... 28

Register Definition 4 – REG_PCLK Definition ... 29

Register Definition 5 – REG_PCLK_POL Definition .. 29

Register Definition 6 – REG_CSPREAD Definition ... 29

Register Definition 7 – REG_SWIZZLE Definition ... 29

Register Definition 8 – REG_DITHER Definition ... 29

Register Definition 9 – REG_OUTBITS Definition.. 29

Register Definition 10 – REG_ROTATE Definition ... 30

Register Definition 11 – REG_DLSWAP Definition .. 30

Register Definition 12 – REG_VSYNC1 Definition ... 30

Register Definition 13 – REG_VSYNC0 Definition ... 30

Register Definition 14 – REG_VSIZE Definition .. 31

Register Definition 15 – REG_VOFFSET Definition .. 31

Register Definition 16 – REG_VCYCLE Definition .. 31

Register Definition 17 – REG_HSYNC1 Definition ... 31

Register Definition 18 – REG_HSYNC0 Definition ... 31

Register Definition 19 – REG_HSIZE Definition.. 31

Register Definition 20 – REG_HOFFSET Definition.. 31

Register Definition 21 – REG_HCYCLE Definition ... 32

Register Definition 22 – REG_PLAY Definition.. 32

Register Definition 23 – REG_SOUND Definition .. 32

Register Definition 24 – REG_VOL_SOUND Definition ... 32

Register Definition 25 – REG_VOL_PB Definition ... 32

Register Definition 26 – REG_PLAYBACK_PLAY Definition ... 33

Register Definition 27 – REG_PLAYBACK_LOOP Definition .. 33

Register Definition 28 – REG_PLAYBACK_FORMAT Definition .. 33

Register Definition 29 – REG_PLAYBACK_FREQ Definition ... 33

Register Definition 30 – REG_PLAYBACK_READPTR Definition ... 33

Register Definition 31 – REG_PLAYBACK_LENGTH Definition ... 34

Register Definition 32 – REG_PLAYBACK_START Definition ... 34

Register Definition 33 – REG_PLAYBACK_PAUSE Definition ... 34

Register Definition 34 – REG_FLASH_STATUS Definition .. 34

Register Definition 35 – REG_FLASH_SIZE Definition ... 34

Register Definition 36 – REG_TOUCH_CONFIG Definition ... 35

Register Definition 37 – REG_TOUCH_TRANSFORM_F Definition .. 35

Register Definition 38 – REG_TOUCH_TRANSFORM_E Definition.. 36

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 203
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Register Definition 39 – REG_TOUCH_TRANSFORM_D Definition ... 36

Register Definition 40 – REG_TOUCH_TRANSFORM_C Definition ... 36

Register Definition 41 – REG_TOUCH_TRANSFORM_B Definition ... 36

Register Definition 42 – REG_TOUCH_TRANSFORM_A Definition ... 36

Register Definition 43 – REG_TOUCH_TAG Definition ... 37

Register Definition 44 – REG_TOUCH_TAG_XY Definition ... 37

Register Definition 45 – REG_TOUCH_SCREEN_XY Definition .. 37

Register Definition 46 – REG_TOUCH_DIRECT_Z1Z2 Definition ... 38

Register Definition 47 – REG_TOUCH_DIRECT_XY ... 38

Register Definition 48 – REG_TOUCH_RZ Definition ... 38

Register Definition 49 – REG_TOUCH_RAW_XY Definition ... 38

Register Definition 50 – REG_TOUCH_RZTHRESH Definition ... 39

Register Definition 51 – REG_TOUCH_OVERSAMPLE Definition .. 39

Register Definition 52 – REG_TOUCH_SETTLE Definition .. 39

Register Definition 53 – REG_TOUCH_CHARGE Definition ... 39

Register Definition 54 – REG_TOUCH_ADC_MODE Definition .. 39

Register Definition 55 – REG_TOUCH_MODE Definition .. 40

Register Definition 56 – REG_CTOUCH_MODE Definition .. 41

Register Definition 57 – REG_CTOUCH_EXTENDED Definition ... 41

Register Definition 58 – REG_CTOUCH_TOUCH_XY Definition ... 41

Register Definition 59 – REG_CTOUCH_TOUCH1_XY Definition .. 41

Register Definition 60 – REG_CTOUCH_TOUCH2_XY Definition ... 41

Register Definition 61 – REG_CTOUCH_TOUCH3_XY Definition .. 42

Register Definition 62 – REG_CTOUCH_TOUCH4_X Definition ... 42

Register Definition 63 – REG_CTOUCH_TOUCH4_Y Definition ... 42

Register Definition 64 – REG_CTOUCH_RAW_XY Definition ... 42

Register Definition 65 – REG_CTOUCH_TAG Definition ... 42

Register Definition 66 – REG_CTOUCH_TAG1 Definition ... 43

Register Definition 67 – REG_CTOUCH_TAG2 Definition ... 43

Register Definition 68 – REG_CTOUCH_TAG3 Definition ... 43

Register Definition 69 – REG_CTOUCH_TAG4 Definition ... 43

Register Definition 70 – REG_CTOUCH_TAG_XY Definition.. 44

Register Definition 71 – REG_CTOUCH_TAG1_XY Definition .. 44

Register Definition 72 – REG_CTOUCH_TAG2_XY Definition .. 44

Register Definition 73 – REG_CTOUCH_TAG3_XY Definition .. 44

Register Definition 74 – REG_CTOUCH_TAG4_XY Definition .. 44

Register Definition 75 – REG_CMD_DL Definition .. 45

Register Definition 76 – REG_CMD_WRITE Definition ... 45

Register Definition 77 – REG_CMD_READ Definition .. 45

Register Definition 78 – REG_CMDB_SPACE Definition ... 46

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 204
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Register Definition 79 – REG_CMDB_WRITE Definition ... 46

Register Definition 80 – REG_CPURESET Definition .. 46

Register Definition 81 – REG_MACRO_1 Definition... 46

Register Definition 82 – REG_MACRO_0 Definition... 46

Register Definition 83 – REG_PWM_DUTY Definition .. 47

Register Definition 84 – REG_PWM_HZ Definition .. 47

Register Definition 85 – REG_INT_MASK Definition .. 47

Register Definition 86 – REG_INT_EN Definition .. 47

Register Definition 87 – REG_INT_FLAGS Definition... 47

Register Definition 88 – REG_GPIO_DIR Definition .. 48

Register Definition 89 – REG_GPIO Definition ... 48

Register Definition 90 – REG_GPIOX_DIR Definition .. 48

Register Definition 91 – REG_GPIOX Definition ... 49

Register Definition 92 – REG_FREQUENCY Definition ... 49

Register Definition 93 – REG_CLOCK Definition ... 49

Register Definition 94 – REG_FRAMES Definition ... 49

Register Definition 95 – REG_ID Definition ... 49

Register Definition 96 – REG_SPI_WIDTH Definition .. 50

Register Definition 97 – REG_ADAPTIVE_FRAMERATE Definition .. 50

Register Definition 98 – REG_UNDERRUN Definition .. 50

Register Definition 99 – REG_AH_HCYCLE_MAX Definition .. 50

Register Definition 100 – REG_PCLK_FREQ Definition .. 51

Register Definition 101 – REG_PCLK_2X Definition .. 51

Register Definition 102 – REG_TRACKER Definition ... 51

Register Definition 103 – REG_TRACKER_1 Definition .. 52

Register Definition 104 – REG_TRACKER_2 Definition .. 52

Register Definition 105 – REG_TRACKER_3 Definition .. 52

Register Definition 106 – REG_TRACKER_4 Definition .. 52

Register Definition 107 – REG_MEDIAFIFO_READ Definition ... 52

Register Definition 108 – REG_MEDIAFIFO_WRITE Definition .. 53

Register Definition 109 – REG_PLAY_CONTROL Definition .. 53

Register Definition 110 – REG_ANIM_ACTIVE Definition ... 53

Register Definition 111 – REG_COPRO_PATCH_PTR Definition .. 53

List of Code Snippets

Code Snippet 1 – Initialization Sequence ... 17

Code Snippet 2 – Play C8 on the Xylophone ... 20

Code snippet 3 – Stop Playing Sound .. 20

Code snippet 4 – Avoid Pop Sound .. 20

Code Snippet 5 – Audio Playback .. 20

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 205
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Code Snippet 6 – Check the status of Audio Playback .. 20

Code Snippet 7 – Stop the Audio Playback ... 20

Code Snippet 8 – Getting Started .. 21

Code Snippet 9 – Color and Transparency .. 26

Code Snippet 10 – PALETTED8 Drawing Example .. 62

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 206
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix C – Revision History

Document Title: BRT_AN_033 BT81X Series Programming Guide

Document Reference No.: BRT_000225

Clearance No.: BRT#129

Product Page: http://brtchip.com/product/

Document Feedback: Send Feedback

Revision Changes Date
(DD-MM-YYYY)

Version 1.0 Initial release 14-08-2018

Version 1.1 Corrected the reset value of Bitmap_transform_A/B/D/E;
Added the limitation of cmd_loadimage for PNG image: top

42K bytes of RAM_G is overwritten;
Fixed the typo of cmd_flashfast; Added the flash driver
information; Fixed the typo in cmd_track example; Added
more explanation for cmd_interrupt
Added the missing definition of OPT_FILL

Removed GL_FORMAT in extended font format，

Added the exception of bitmap format in font metrics
block.
Fixed the broken reference.
Updated the ASTC RAM layout image.

03-07-2019

Version 1.2 Updated statement in CMD_VIDEOFRAME 30-03-2020

Version 2.0 Added description for BT817/8
Enhanced the register tables and command example code
format (CMD_GETPTR & CMD_CLEARCACHE)
Example added for CMD_CLEARCACHE

The -1 definition of channel number for animation playback

removed
Updated Table 28 (Added Parameter option -
OPT_DITHER)

07-07-2020

Version 2.1 Updated the Table of Flash Interface; Updated the Sample
code to cover the RAM_CMD wrapup use case; Updated the

Section 5.4 to reflect CMD_KEYS do not support UTFB
characters; Deleted the obsolete CMD_SKETCH; Fixed the
mute sound value in the code snippet “Avoid Pop Sound”

07-06-2021

Version 2.2 Fixed multiple minor format and typo issues; Used lower
case for commands parameters; Updated the conversion
specifier 'c' and 's' in string format section from upper case

to lower case; Corrected the bit per pixel value for ASTC
8x8,10x5,10x6 in table 12: Bitmap formats and bits per
pixel; Added the missing member in xfont structure

24-09-2021

Version 2.3 Updated the following -
• Section “Register Definition 100 – REG_PCLK_FREQ

Definition” to correct the bits and also section “5.111
CMD_PCLKFREQ” to add notes about using the
command.

• Removed the 300ms delay from Code Snippet 1 –
Initialization Sequence

• Change the fast mode of flash to full-speed mode of
flash

• Example code of cmd_plkfreq
• Fix the REG_SPI_WIDTH offset to 0x188
• Remove the disable feature description of

cmd_fontcache
• Add RST_PULSE in the sample code of bootup

sequence

16-12-2022

 Application Note

 BRT_AN_033 BT81X Series Programming Guide
 Version 2.4

 Document Reference No.: BRT_000225 Clearance No.: BRT#129

 207
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

• Typo correction: REG_GPIO_X ->REG_GPIOX
• Remove the undefined DLSWAP_FRAME
• Add the requirement of ASTC multi-cell bitmap: 4

blocks alignment

• Modify the maximum bitmap size of Bargraph from
256x256 to screen width to 256.

• Add the missing parameter of cmd_memcpy
• Improve xfont structure description

Version 2.4 Updated the following –

• Change int16_t to uint16_t where it is applicable
• The dest parameter of JUMP/CALL command is

changed to number of display list
• Removed the irrelevant chip ID of FT81x
• Fixed the typo of PALETTED4444/565 in

PALETTE_SOURCE command

• Added example code for CMD_SETBITMAP

• Added cmd_nop command
• Moved the RST_PULSE host command from ‘after` to

`before` ACTIVE host command in boot up sequence.
• Rephrased the note of the SPI clock frequency in boot

up sequence.
• Fixed the typo cmd_crc to cmd_memcrc

• Updated the office address of Singapore

17-11-2023

